Mostrar el registro sencillo del ítem
dc.contributor.author | Sorribes, José Vicente | es_ES |
dc.contributor.author | Peñalver Herrero, Mª Lourdes | es_ES |
dc.contributor.author | Lloret, Jaime | es_ES |
dc.contributor.author | Tavares De Araujo Cesariny Calafate, Carlos Miguel | es_ES |
dc.date.accessioned | 2022-11-07T16:33:46Z | |
dc.date.available | 2022-11-07T16:33:46Z | |
dc.date.issued | 2022-07 | es_ES |
dc.identifier.issn | 0929-6212 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/189319 | |
dc.description.abstract | [EN] Neighbor discovery is an important first step after the deployment of ad hoc wireless networks since they are a type of network that do not provide a communications infrastructure right after their deployment, the devices have radio transceivers which provide a limited transmission range, and there is a lack of knowledge of the potential neighbors. In this work two proposals to overcome the neighbor discovery in static one-hop environments in the presence of collisions, are presented. We performed simulations through Castalia 3.2, to compare the performance of the proposals against that for two protocols from the literature, i.e. PRR and Hello, and evaluate them according to six metrics. According to simulation results, the Leader-based proposal (O(N)) outperforms the other protocols in terms of neighbor discovery time, throughput, discoveries vs packets sent ratio, and packets received vs sent ratio, and the TDMA-based proposal is the slowest (O(N-2)) and presents the worst results regarding energy consumption, and discoveries vs packets sent ratio. However, both proposals follow a predetermined transmission schedule that allows them to discover all the neighbors with probability 1, and use a feedback mechanism. We also performed an analytical study for both proposals according to several metrics. Moreover, the Leader-based solution can only properly operate in one-hop environments, whereas the TDMA-based proposal is appropriate for its use in multi-hop environments. | es_ES |
dc.description.sponsorship | This work has been partially supported by the "Ministerio de Economia y Competitividad" in the "Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento" within the project under Grant TIN2017-84802-C2-1-P. This work has also been partially supported by European Union through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) project ERANETMED3-227 SMARTWATIR. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Wireless Personal Communications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Ad hoc wireless networks | es_ES |
dc.subject | Neighbor discovery | es_ES |
dc.subject | Deterministic | es_ES |
dc.subject | Randomized | es_ES |
dc.subject | One-hop | es_ES |
dc.subject | Collisions | es_ES |
dc.title | Collision Avoidance Based Neighbor Discovery in Ad Hoc Wireless Networks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11277-021-09091-x | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84802-C2-1-P/ES/RED COGNITIVA DEFINIDA POR SOFTWARE PARA OPTIMIZAR Y SECURIZAR TRAFICO DE INTERNET DE LAS COSAS CON INFORMACION CRITICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/609475/EU | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Sorribes, JV.; Peñalver Herrero, ML.; Lloret, J.; Tavares De Araujo Cesariny Calafate, CM. (2022). Collision Avoidance Based Neighbor Discovery in Ad Hoc Wireless Networks. Wireless Personal Communications. 125(2):987-1011. https://doi.org/10.1007/s11277-021-09091-x | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11277-021-09091-x | es_ES |
dc.description.upvformatpinicio | 987 | es_ES |
dc.description.upvformatpfin | 1011 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 125 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\445536 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Awerbuch, B., & Mishra, A. (2008). Introduction to ad hoc networks. cs-647: Advanced topics in wireless networks http://www.cs.jhu.edu/~cs647/intro_adhoc.pdf. unpublished. | es_ES |
dc.description.references | Conti, M., Crowcroft, J., Maselli, G., & Turi, G. (2005). A modular cross-Layer architecture for ad hoc networks. In J. Wu (Ed.), Handbook on Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks (pp. 1–12). New York: Auerbach Publications. | es_ES |
dc.description.references | Sun, G., Wu, F., Gao, X., Chen, G., & Wang, W. (2013). Time-efficient protocols for neighbor discovery in wireless ad hoc networks. IEEE Transactions on Vehicular Technology, 62, 2780–2791. https://doi.org/10.1109/TVT.2013.2246204 | es_ES |
dc.description.references | Vasudevan, S., Adler, M., Goeckel, D., & Towsley, D. (2013). Efficient algorithms for neighbor discovery in wireless networks. IEEE/ACM Transactions on Networking, 21, 69–83. https://doi.org/10.1109/TNET.2012.2189892 | es_ES |
dc.description.references | McGlynn, M. J., & Borbash, S. A. (2001). Birthday protocols for low energy deployment and flexible neighbor discovery in ad hoc wireless networks. In Proceedings of the 2nd ACM International Symposium on Mobile Ad Hoc Networking Computing (pp. 137–145). ACM Press. | es_ES |
dc.description.references | Stoleru, R., Wu, H., & Chenji, H. (2011). Secure neighbor discovery in mobile ad hoc networks. In Proceedings - 8th IEEE International Conference on Mobile Ad-hoc and Sensor Systems, MASS 2011 (pp. 35–42). https://doi.org/10.1109/MASS.2011.15. | es_ES |
dc.description.references | Varghane, N., & Kurade, B. (2014). Secure protocol and signature based intrusion detection for spontaneous wireless AD HOC network. International Journal of Computer Science and Mobile Computing (IJCSMC), 3(5), 758–768. | es_ES |
dc.description.references | Hamida, E. B., Chelius, G., Busson, A., & Fleury, E. (2008). Neighbor discovery in multi-hop wireless networks: Evaluation and dimensioning with interference considerations. Discrete Mathematics and Theoretical Computer Science (DMTCS), 10, 87–114. | es_ES |
dc.description.references | Sorribes, J. V., Peñalver, L., Calafate, C. T., & Lloret, J. (2020). Collision-Aware Deterministic Neighbor Discovery in Static Ad Hoc Wireless Networks. In 2020 Global Conference on Wireless and Optical Technologies (GCWOT) (pp. 1–8), https://doi.org/10.1109/GCWOT49901.2020.9391616. | es_ES |
dc.description.references | Boulis, A. (2011). Castalia - A simulator for wireless sensor networks and body area networks. Version 3.2 . User’s Manual. https://es.scribd.com/document/78901825/castalia-user-manual. unpublished. | es_ES |
dc.description.references | Dutta, P., & Culler, D. (2008). Practical asynchronous neighbor discovery and rendezvous for mobile sensing applications. In SenSys (pp. 71–84). | es_ES |
dc.description.references | Khatibi, S., & Rohani, R. (2010). Quorum-based neighbor discovery in self-organized cognitive MANET. In 21st Annual IEEE International Symposium on Personal. Indoor and Mobile Radio Communications. (pp. 2239–2243). IEEE. https://doi.org/10.1109/PIMRC.2010.5671683 | es_ES |
dc.description.references | Bakht, M., & Kravets, R. (2010) SearchLight: A systematic probing-based asynchronous neighbor discovery protocol. In Illinois Digital Environment for Access to Learning and Scholarship Repository, unpublished. | es_ES |
dc.description.references | Kandhalu, A., Lakshmanan, K., & Rajkumar, R. (2010). U-Connect: A low-latency energy-efficient asynchronous neighbor discovery protocol. In Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks, IPSN’10 (pp. 350-361). https://doi.org/10.14/1791212.1791253. | es_ES |
dc.description.references | Yang, S., Wang, C., & Jiang, C. (2018). Centron: Cooperative neighbor discovery in mobile ad-hoc networks. Computer Networks, 136, 128–136. https://doi.org/10.1016/j.comnet.2018.03.003 | es_ES |
dc.description.references | Chen, L., Fan, R., Zhang, Y., Shi, S., Bian, K., Chen, L., et al. (2018). On heterogeneous duty cycles for neighbor discovery in wireless sensor networks. Ad Hoc Networks, Elsevier, 77, 54–68. https://doi.org/10.1016/j.adhoc.2018.04.007 | es_ES |
dc.description.references | Garcia, M., Bri, D., Boronat, F., & Lloret, J. (2008). A new neighbour selection strategy for group-based wireless sensor networks. In Fourth International Conference on Networking and Services, ICNS’08 (pp. 109-114). https://doi.org/10.1109/ICNS.2008.18. | es_ES |
dc.description.references | Chunfeng, L., Gang, Z., Weisi, G., & Ran, H. (2020). Kalman prediction-based neighbor discovery and its efect on routing protocol in vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 21(1), 159–169. https://doi.org/10.1109/TITS.2018.2889923 | es_ES |
dc.description.references | Li, X., Mitton, N., & Simplot-Ryl, D. (2011). Mobility prediction based neighborhood discovery in mobile ad hoc networks. In Proceedings of 10th international IFIP TC networking conference (pp. 241–253). Valencia, Spain, May 2011. | es_ES |
dc.description.references | Taleb, T., Sakhaee, E., Jamalipour, A., Hashimoto, K., Kato, N., & Nemoto, Y. (2007). A stable routing protocol to support ITS services in VANET networks. IEEE Transactions on Vehicular Technology, 56(6), 3337–3347. | es_ES |
dc.description.references | Wei, Z., Han, C., Qiu, C., Feng, Z., & Wu, H. (2019). Radar assisted fast neighbor discovery for wireless ad hoc networks. IEEE Access, 7, 176514–176524. https://doi.org/10.1109/ACCESS.2019.2950277 | es_ES |
dc.description.references | Li, J., Peng, L., Ye, Y., Xu, R., Zhao, W., & Tian C. (2014). A neighbor discovery algorithm in network of radar and communication integrated system. In Proceedings IEEE 17th international conference on computational science and engineering (CSE) (pp. 1142–1149). Chengdu, China | es_ES |
dc.description.references | Carty, J., & Jayaweera, S. K. (2019). Distributed network, neighbor discovery and blind routing for mobile wireless ad-hoc networks. In 12th IFIP wireless and mobile networking conference (WMNC) (pp. 131–135). Paris, France. https://doi.org/10.23919/WMNC.2019.8881802. | es_ES |
dc.description.references | Wang, Q., He, X., & Chen, N. (2019). A cross-layer neighbour discovery algorithm in ad hoc networks based on hexagonal clustering and GPS. In IOP conference series: Earth and environmental science, 6th annual 2018 international conference on geo-spatial knowledge and intelligence (vol. 234, 012050, pp. 1–6) 14–16 December 2018, Hubei, China. https://doi.org/10.1088/1755-1315/234/1/012050. | es_ES |
dc.description.references | El Khamlichi, B., Nguyen, D. H. N., El Abbadi, J., Rowe, N. W., & Kumar, S. (2019). Learning automaton-based neighbor discovery for wireless networks using directional antennas. IEEE Wireless Communications Letters, 8(1), 69–72. https://doi.org/10.1109/LWC.2018.2855120 | es_ES |
dc.description.references | Zhang, Z., & Li, B. (2008). Neighbor discovery in mobile ad hoc selfconfguring networks with directional antennas: Algorithms and comparisons. IEEE Transactions on Wireless Communications, 7(5), 1540–1549. | es_ES |
dc.description.references | Vasudevan, S., Kurose, J., & Towsley, D. (2005). On neighbor discovery in wireless networks with directional antennas. In Proceedings of IEEE international conference on computer communications (pp. 2502–2512). Miami, FL, USA. | es_ES |
dc.description.references | Ji, D., Wei, Z., Chen, X., Han, C., Chen, Q., Feng, Z., & Ning, F. (2019). Radar-communication integrated neighbor discovery for wireless ad hoc networks. In 11th international conference on wireless communications and signal processing (WCSP) (pp. 1–5). Xi’an, China. https://doi.org/10.1109/WCSP.2019.8927896. | es_ES |
dc.description.references | Ling, H., & Yang, S. (2019). Passive neighbor discovery with social recognition for mobile ad hoc social networking applications. Wireless Networks, 25, 4247–4258. https://doi.org/10.1007/s11276-019-02087-3 | es_ES |
dc.description.references | Chen, H., Qin, Y., Lin, K., Luan, Y., Wang, Z., Yu, J., & Li, Y. (2020). PWEND: Proactive wakeup based energy-efcient neighbor discovery for mobile sensor networks. Ad Hoc Networks, 107, 102247. https://doi.org/10.1016/j.adhoc.2020.102247 | es_ES |
dc.description.references | Qiu, Y., Li, S., Xu, X., & Li, Z. (2016). Talk more listen less: Energy-efficient neighbor discovery in wireless sensor networks. In The 35th annual IEEE international conference on computer communications (pp. 1–9). IEEE INFOCOM 2016. https://doi.org/10.1109/INFOCOM.2016.7524336. | es_ES |
dc.description.references | Chen, H., Lou, W., Wang, Z., & Xia, F. (2018). On achieving asynchronous energy-efcient neighbor discovery for mobile sensor networks. IEEE Transactions on Emerging Topics in Computing, 6, 553–565. | es_ES |
dc.description.references | Hess, A., Hyytia, E., & Ott, J. (2014). Efficient neighbor discovery in mobile opportunistic networking using mobility awareness. In Proc. 6th International Conference on Communication Systems and Networks (COMSNETS) (pp. 1–8). | es_ES |
dc.description.references | Sravankumar, B., & Moparthy, N. R. (2021). A survey on continuous neighbor discovery for mobile low duty cycle wireless sensor network. In Materials Today: Proceedings. ISSN 2214-7853. https://doi.org/10.1016/j.matpr.2021.01.463 | es_ES |
dc.description.references | Gu, Z., Cao, Z., Tian, Z., Wang, Y., Du, X., & Mohsen, G. (2020). A low-latency and energy-efficient neighbor discovery algorithm for wireless sensor networks. Sensors. https://doi.org/10.3390/s20030657 | es_ES |
dc.description.references | Garcia, M., Martinez, C., Tomas, J., & Lloret, J. (2007). Wireless Sensors self-location in an Indoor WLAN environment. In International Conference on Sensor Technologies and Applications SENSORCOMM 2007 (pp. 14–20). Spain: Valencia. | es_ES |
dc.description.references | Lloret, J., López, J. J., Turró, C., & Flores, S. (2004). A fast design model for indoor radio coverage in the 2.4 GHz wireless LAN. In 1st International Symposium on Wireless Communication Systems (pp. 408-412). | es_ES |