- -

Collision Avoidance Based Neighbor Discovery in Ad Hoc Wireless Networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Collision Avoidance Based Neighbor Discovery in Ad Hoc Wireless Networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sorribes, José Vicente es_ES
dc.contributor.author Peñalver Herrero, Mª Lourdes es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Tavares De Araujo Cesariny Calafate, Carlos Miguel es_ES
dc.date.accessioned 2022-11-07T16:33:46Z
dc.date.available 2022-11-07T16:33:46Z
dc.date.issued 2022-07 es_ES
dc.identifier.issn 0929-6212 es_ES
dc.identifier.uri http://hdl.handle.net/10251/189319
dc.description.abstract [EN] Neighbor discovery is an important first step after the deployment of ad hoc wireless networks since they are a type of network that do not provide a communications infrastructure right after their deployment, the devices have radio transceivers which provide a limited transmission range, and there is a lack of knowledge of the potential neighbors. In this work two proposals to overcome the neighbor discovery in static one-hop environments in the presence of collisions, are presented. We performed simulations through Castalia 3.2, to compare the performance of the proposals against that for two protocols from the literature, i.e. PRR and Hello, and evaluate them according to six metrics. According to simulation results, the Leader-based proposal (O(N)) outperforms the other protocols in terms of neighbor discovery time, throughput, discoveries vs packets sent ratio, and packets received vs sent ratio, and the TDMA-based proposal is the slowest (O(N-2)) and presents the worst results regarding energy consumption, and discoveries vs packets sent ratio. However, both proposals follow a predetermined transmission schedule that allows them to discover all the neighbors with probability 1, and use a feedback mechanism. We also performed an analytical study for both proposals according to several metrics. Moreover, the Leader-based solution can only properly operate in one-hop environments, whereas the TDMA-based proposal is appropriate for its use in multi-hop environments. es_ES
dc.description.sponsorship This work has been partially supported by the "Ministerio de Economia y Competitividad" in the "Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento" within the project under Grant TIN2017-84802-C2-1-P. This work has also been partially supported by European Union through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) project ERANETMED3-227 SMARTWATIR. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Wireless Personal Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Ad hoc wireless networks es_ES
dc.subject Neighbor discovery es_ES
dc.subject Deterministic es_ES
dc.subject Randomized es_ES
dc.subject One-hop es_ES
dc.subject Collisions es_ES
dc.title Collision Avoidance Based Neighbor Discovery in Ad Hoc Wireless Networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11277-021-09091-x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84802-C2-1-P/ES/RED COGNITIVA DEFINIDA POR SOFTWARE PARA OPTIMIZAR Y SECURIZAR TRAFICO DE INTERNET DE LAS COSAS CON INFORMACION CRITICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/609475/EU es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Sorribes, JV.; Peñalver Herrero, ML.; Lloret, J.; Tavares De Araujo Cesariny Calafate, CM. (2022). Collision Avoidance Based Neighbor Discovery in Ad Hoc Wireless Networks. Wireless Personal Communications. 125(2):987-1011. https://doi.org/10.1007/s11277-021-09091-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11277-021-09091-x es_ES
dc.description.upvformatpinicio 987 es_ES
dc.description.upvformatpfin 1011 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 125 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\445536 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Awerbuch, B., & Mishra, A. (2008). Introduction to ad hoc networks. cs-647: Advanced topics in wireless networks http://www.cs.jhu.edu/~cs647/intro_adhoc.pdf. unpublished. es_ES
dc.description.references Conti, M., Crowcroft, J., Maselli, G., & Turi, G. (2005). A modular cross-Layer architecture for ad hoc networks. In J. Wu (Ed.), Handbook on Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks (pp. 1–12). New York: Auerbach Publications. es_ES
dc.description.references Sun, G., Wu, F., Gao, X., Chen, G., & Wang, W. (2013). Time-efficient protocols for neighbor discovery in wireless ad hoc networks. IEEE Transactions on Vehicular Technology, 62, 2780–2791. https://doi.org/10.1109/TVT.2013.2246204 es_ES
dc.description.references Vasudevan, S., Adler, M., Goeckel, D., & Towsley, D. (2013). Efficient algorithms for neighbor discovery in wireless networks. IEEE/ACM Transactions on Networking, 21, 69–83. https://doi.org/10.1109/TNET.2012.2189892 es_ES
dc.description.references McGlynn, M. J., & Borbash, S. A. (2001). Birthday protocols for low energy deployment and flexible neighbor discovery in ad hoc wireless networks. In Proceedings of the 2nd ACM International Symposium on Mobile Ad Hoc Networking Computing (pp. 137–145). ACM Press. es_ES
dc.description.references Stoleru, R., Wu, H., & Chenji, H. (2011). Secure neighbor discovery in mobile ad hoc networks. In Proceedings - 8th IEEE International Conference on Mobile Ad-hoc and Sensor Systems, MASS 2011 (pp. 35–42). https://doi.org/10.1109/MASS.2011.15. es_ES
dc.description.references Varghane, N., & Kurade, B. (2014). Secure protocol and signature based intrusion detection for spontaneous wireless AD HOC network. International Journal of Computer Science and Mobile Computing (IJCSMC), 3(5), 758–768. es_ES
dc.description.references Hamida, E. B., Chelius, G., Busson, A., & Fleury, E. (2008). Neighbor discovery in multi-hop wireless networks: Evaluation and dimensioning with interference considerations. Discrete Mathematics and Theoretical Computer Science (DMTCS), 10, 87–114. es_ES
dc.description.references Sorribes, J. V., Peñalver, L., Calafate, C. T., & Lloret, J. (2020). Collision-Aware Deterministic Neighbor Discovery in Static Ad Hoc Wireless Networks. In 2020 Global Conference on Wireless and Optical Technologies (GCWOT) (pp. 1–8), https://doi.org/10.1109/GCWOT49901.2020.9391616. es_ES
dc.description.references Boulis, A. (2011). Castalia - A simulator for wireless sensor networks and body area networks. Version 3.2 . User’s Manual. https://es.scribd.com/document/78901825/castalia-user-manual. unpublished. es_ES
dc.description.references Dutta, P., & Culler, D. (2008). Practical asynchronous neighbor discovery and rendezvous for mobile sensing applications. In SenSys (pp. 71–84). es_ES
dc.description.references Khatibi, S., & Rohani, R. (2010). Quorum-based neighbor discovery in self-organized cognitive MANET. In 21st Annual IEEE International Symposium on Personal. Indoor and Mobile Radio Communications. (pp. 2239–2243). IEEE. https://doi.org/10.1109/PIMRC.2010.5671683 es_ES
dc.description.references Bakht, M., & Kravets, R. (2010) SearchLight: A systematic probing-based asynchronous neighbor discovery protocol. In Illinois Digital Environment for Access to Learning and Scholarship Repository, unpublished. es_ES
dc.description.references Kandhalu, A., Lakshmanan, K., & Rajkumar, R. (2010). U-Connect: A low-latency energy-efficient asynchronous neighbor discovery protocol. In Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks, IPSN’10 (pp. 350-361). https://doi.org/10.14/1791212.1791253. es_ES
dc.description.references Yang, S., Wang, C., & Jiang, C. (2018). Centron: Cooperative neighbor discovery in mobile ad-hoc networks. Computer Networks, 136, 128–136. https://doi.org/10.1016/j.comnet.2018.03.003 es_ES
dc.description.references Chen, L., Fan, R., Zhang, Y., Shi, S., Bian, K., Chen, L., et al. (2018). On heterogeneous duty cycles for neighbor discovery in wireless sensor networks. Ad Hoc Networks, Elsevier, 77, 54–68. https://doi.org/10.1016/j.adhoc.2018.04.007 es_ES
dc.description.references Garcia, M., Bri, D., Boronat, F., & Lloret, J. (2008). A new neighbour selection strategy for group-based wireless sensor networks. In Fourth International Conference on Networking and Services, ICNS’08 (pp. 109-114). https://doi.org/10.1109/ICNS.2008.18. es_ES
dc.description.references Chunfeng, L., Gang, Z., Weisi, G., & Ran, H. (2020). Kalman prediction-based neighbor discovery and its efect on routing protocol in vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 21(1), 159–169. https://doi.org/10.1109/TITS.2018.2889923 es_ES
dc.description.references Li, X., Mitton, N., & Simplot-Ryl, D. (2011). Mobility prediction based neighborhood discovery in mobile ad hoc networks. In Proceedings of 10th international IFIP TC networking conference (pp. 241–253). Valencia, Spain, May 2011. es_ES
dc.description.references Taleb, T., Sakhaee, E., Jamalipour, A., Hashimoto, K., Kato, N., & Nemoto, Y. (2007). A stable routing protocol to support ITS services in VANET networks. IEEE Transactions on Vehicular Technology, 56(6), 3337–3347. es_ES
dc.description.references Wei, Z., Han, C., Qiu, C., Feng, Z., & Wu, H. (2019). Radar assisted fast neighbor discovery for wireless ad hoc networks. IEEE Access, 7, 176514–176524. https://doi.org/10.1109/ACCESS.2019.2950277 es_ES
dc.description.references Li, J., Peng, L., Ye, Y., Xu, R., Zhao, W., & Tian C. (2014). A neighbor discovery algorithm in network of radar and communication integrated system. In Proceedings IEEE 17th international conference on computational science and engineering (CSE) (pp. 1142–1149). Chengdu, China es_ES
dc.description.references Carty, J., & Jayaweera, S. K. (2019). Distributed network, neighbor discovery and blind routing for mobile wireless ad-hoc networks. In 12th IFIP wireless and mobile networking conference (WMNC) (pp. 131–135). Paris, France. https://doi.org/10.23919/WMNC.2019.8881802. es_ES
dc.description.references Wang, Q., He, X., & Chen, N. (2019). A cross-layer neighbour discovery algorithm in ad hoc networks based on hexagonal clustering and GPS. In IOP conference series: Earth and environmental science, 6th annual 2018 international conference on geo-spatial knowledge and intelligence (vol. 234, 012050, pp. 1–6) 14–16 December 2018, Hubei, China. https://doi.org/10.1088/1755-1315/234/1/012050. es_ES
dc.description.references El Khamlichi, B., Nguyen, D. H. N., El Abbadi, J., Rowe, N. W., & Kumar, S. (2019). Learning automaton-based neighbor discovery for wireless networks using directional antennas. IEEE Wireless Communications Letters, 8(1), 69–72. https://doi.org/10.1109/LWC.2018.2855120 es_ES
dc.description.references Zhang, Z., & Li, B. (2008). Neighbor discovery in mobile ad hoc selfconfguring networks with directional antennas: Algorithms and comparisons. IEEE Transactions on Wireless Communications, 7(5), 1540–1549. es_ES
dc.description.references Vasudevan, S., Kurose, J., & Towsley, D. (2005). On neighbor discovery in wireless networks with directional antennas. In Proceedings of IEEE international conference on computer communications (pp. 2502–2512). Miami, FL, USA. es_ES
dc.description.references Ji, D., Wei, Z., Chen, X., Han, C., Chen, Q., Feng, Z., & Ning, F. (2019). Radar-communication integrated neighbor discovery for wireless ad hoc networks. In 11th international conference on wireless communications and signal processing (WCSP) (pp. 1–5). Xi’an, China. https://doi.org/10.1109/WCSP.2019.8927896. es_ES
dc.description.references Ling, H., & Yang, S. (2019). Passive neighbor discovery with social recognition for mobile ad hoc social networking applications. Wireless Networks, 25, 4247–4258. https://doi.org/10.1007/s11276-019-02087-3 es_ES
dc.description.references Chen, H., Qin, Y., Lin, K., Luan, Y., Wang, Z., Yu, J., & Li, Y. (2020). PWEND: Proactive wakeup based energy-efcient neighbor discovery for mobile sensor networks. Ad Hoc Networks, 107, 102247. https://doi.org/10.1016/j.adhoc.2020.102247 es_ES
dc.description.references Qiu, Y., Li, S., Xu, X., & Li, Z. (2016). Talk more listen less: Energy-efficient neighbor discovery in wireless sensor networks. In The 35th annual IEEE international conference on computer communications (pp. 1–9). IEEE INFOCOM 2016. https://doi.org/10.1109/INFOCOM.2016.7524336. es_ES
dc.description.references Chen, H., Lou, W., Wang, Z., & Xia, F. (2018). On achieving asynchronous energy-efcient neighbor discovery for mobile sensor networks. IEEE Transactions on Emerging Topics in Computing, 6, 553–565. es_ES
dc.description.references Hess, A., Hyytia, E., & Ott, J. (2014). Efficient neighbor discovery in mobile opportunistic networking using mobility awareness. In Proc. 6th International Conference on Communication Systems and Networks (COMSNETS) (pp. 1–8). es_ES
dc.description.references Sravankumar, B., & Moparthy, N. R. (2021). A survey on continuous neighbor discovery for mobile low duty cycle wireless sensor network. In Materials Today: Proceedings. ISSN 2214-7853. https://doi.org/10.1016/j.matpr.2021.01.463 es_ES
dc.description.references Gu, Z., Cao, Z., Tian, Z., Wang, Y., Du, X., & Mohsen, G. (2020). A low-latency and energy-efficient neighbor discovery algorithm for wireless sensor networks. Sensors. https://doi.org/10.3390/s20030657 es_ES
dc.description.references Garcia, M., Martinez, C., Tomas, J., & Lloret, J. (2007). Wireless Sensors self-location in an Indoor WLAN environment. In International Conference on Sensor Technologies and Applications SENSORCOMM 2007 (pp. 14–20). Spain: Valencia. es_ES
dc.description.references Lloret, J., López, J. J., Turró, C., & Flores, S. (2004). A fast design model for indoor radio coverage in the 2.4 GHz wireless LAN. In 1st International Symposium on Wireless Communication Systems (pp. 408-412). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem