- -

ELDC: An Artificial Neural Network Based Energy-Efficient and Robust Routing Scheme for Pollution Monitoring in WSNs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

ELDC: An Artificial Neural Network Based Energy-Efficient and Robust Routing Scheme for Pollution Monitoring in WSNs

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mehmood, Amjad es_ES
dc.contributor.author Lv, Zhihan es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Umar, Muhammad Muneer es_ES
dc.date.accessioned 2022-11-07T16:34:17Z
dc.date.available 2022-11-07T16:34:17Z
dc.date.issued 2020-03 es_ES
dc.identifier.issn 2168-6750 es_ES
dc.identifier.uri http://hdl.handle.net/10251/189340
dc.description.abstract [EN] The range of applications of Wireless Sensor Networks (WSNs) is increasing continuously despite of their serious constraints of the sensor nodes¿ resources such as storage, processing capacity, communication range and energy. The main issues in WSN are the energy consumption and the delay in relaying data to the Sink node. This becomes extremely important when deploying a big number of nodes, like the case of industry pollution monitoring. We propose an artificial neural network based energy-efficient and robust routing scheme for WSNs called ELDC. In this technique, the network is trained on huge data set containing almost all scenarios to make the network more reliable and adaptive to the environment. Additionally, it uses group based methodology to increase the life-span of the overall network, where groups may have different sizes. An artificial neural network provides an efficient threshold values for the selection of a group's CN and a cluster head based on back propagation technique and allows intelligent, efficient, and robust group organization. Thus, our proposed technique is highly energy-efficient capable to increase sensor nodes¿ lifetime. Simulation results show that it outperforms LEACH protocol by 42 percent, and other state-of-the-art protocols by more than 30 percent. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Transactions on Emerging Topics in Computing. IEEE TETC es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Protocols es_ES
dc.subject Wireless sensor networks es_ES
dc.subject Monitoring es_ES
dc.subject Energy consumption es_ES
dc.subject Energy efficiency es_ES
dc.subject Spread spectrum communication es_ES
dc.subject Artificial neural networks es_ES
dc.subject Group-based networks es_ES
dc.subject Load balancing es_ES
dc.subject Prolonging network life es_ES
dc.subject Residual energy es_ES
dc.subject Sleep mode es_ES
dc.title ELDC: An Artificial Neural Network Based Energy-Efficient and Robust Routing Scheme for Pollution Monitoring in WSNs es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/TETC.2017.2671847 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Mehmood, A.; Lv, Z.; Lloret, J.; Umar, MM. (2020). ELDC: An Artificial Neural Network Based Energy-Efficient and Robust Routing Scheme for Pollution Monitoring in WSNs. IEEE Transactions on Emerging Topics in Computing. IEEE TETC. 8(1):106-114. https://doi.org/10.1109/TETC.2017.2671847 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/TETC.2017.2671847 es_ES
dc.description.upvformatpinicio 106 es_ES
dc.description.upvformatpfin 114 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\473137 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem