- -

A comprehensive survey of multi-view video summarization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A comprehensive survey of multi-view video summarization

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hussain, Tanveer es_ES
dc.contributor.author Muhammad, Khan es_ES
dc.contributor.author Ding, Weiping es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Baik, Sung Wook es_ES
dc.contributor.author de Albuquerque, Victor Hugo C. es_ES
dc.date.accessioned 2022-11-07T16:34:39Z
dc.date.available 2022-11-07T16:34:39Z
dc.date.issued 2021-01 es_ES
dc.identifier.issn 0031-3203 es_ES
dc.identifier.uri http://hdl.handle.net/10251/189360
dc.description.abstract [EN] There has been an exponential growth in the amount of visual data on a daily basis acquired from single or multi-view surveillance camera networks. This massive amount of data requires efficient mechanisms such as video summarization to ensure that only significant data are reported and the redundancy is reduced. Multi-view video summarization (MVS) is a less redundant and more concise way of providing information from the video content of all the cameras in the form of either keyframes or video segments. This paper presents an overview of the existing strategies proposed for MVS, including their advantages and drawbacks. Our survey covers the genericsteps in MVS, such as the pre-processing of video data, feature extraction, and post-processing followed by summary generation. We also describe the datasets that are available for the evaluation of MVS. Finally, we examine the major current issues related to MVS and put forward the recommendations for future research(1). (C) 2020 Elsevier Ltd. All rights reserved. es_ES
dc.description.sponsorship This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1A2B5B01070067) es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Pattern Recognition es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Computer vision es_ES
dc.subject Multi-view video summarization es_ES
dc.subject Multi-sensor management es_ES
dc.subject Multi-camera networks es_ES
dc.subject Machine learning es_ES
dc.subject Features fusion es_ES
dc.subject Big data es_ES
dc.subject Video summarization survey es_ES
dc.title A comprehensive survey of multi-view video summarization es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.patcog.2020.107567 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NRF//2019R1A2B5B01070067/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Hussain, T.; Muhammad, K.; Ding, W.; Lloret, J.; Baik, SW.; De Albuquerque, VHC. (2021). A comprehensive survey of multi-view video summarization. Pattern Recognition. 109:1-15. https://doi.org/10.1016/j.patcog.2020.107567 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.patcog.2020.107567 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 109 es_ES
dc.relation.pasarela S\473217 es_ES
dc.contributor.funder National Research Foundation of Korea es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem