Mostrar el registro sencillo del ítem
dc.contributor.author | Ullah, Fasee | es_ES |
dc.contributor.author | Abdullah, Abdul Hanan | es_ES |
dc.contributor.author | Kaiwartya, Omprakash | es_ES |
dc.contributor.author | Lloret, Jaime | es_ES |
dc.contributor.author | Arshad, Marina Md | es_ES |
dc.date.accessioned | 2022-11-07T16:34:48Z | |
dc.date.available | 2022-11-07T16:34:48Z | |
dc.date.issued | 2020-10 | es_ES |
dc.identifier.issn | 1018-4864 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/189365 | |
dc.description.abstract | [EN] Wireless body area network (WBAN) has witnessed significant attentions in the healthcare domain using biomedical sensor-based monitoring of heterogeneous nature of vital signs of a patient's body. The design of frequency band, MAC superframe structure, and slots allocation to the heterogeneous nature of the patient's packets have become the challenging problems in WBAN due to the diverse QoS requirements. In this context, this paper proposes an Energy Efficient Traffic Prioritization for Medium Access Control (EETP-MAC) protocol, which provides sufficient slots with higher bandwidth and guard bands to avoid channels interference causing longer delay. Specifically, the design of EETP-MAC is broadly divided in to four folds. Firstly, patient data traffic prioritization is presented with broad categorization including Non-Constrained Data (NCD), Delay-Constrained Data (DCD), Reliability-Constrained Data (RCD) and Critical Data (CD). Secondly, a modified superframe structure design is proposed for effectively handling the traffic prioritization. Thirdly, threshold based slot allocation technique is developed to reduce contention by effectively quantifying criticality on patient data. Forth, an energy efficient frame design is presented focusing on beacon interval, superframe duration, and packet size and inactive period. Simulations are performed to comparatively evaluate the performance of the proposed EETP-MAC with the state-of-the-art MAC protocols. The comparative evaluation attests the benefit of EETP-MAC in terms of efficient slot allocation resulting in lower delay and energy consumption. | es_ES |
dc.description.sponsorship | The research is supported by Ministry of Higher Education Malaysia (MOHE) and conducted in collaboration with Research Management Center (RMC) at University Teknologi Malaysia (UTM) under VOT NUMBER: R.J130000.7828.4F859 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Telecommunication Systems | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Wireless body area network | es_ES |
dc.subject | Medium access control | es_ES |
dc.subject | Energy efficient | es_ES |
dc.subject | Traffic Prioritization | es_ES |
dc.title | EETP-MAC: energy efficient traffic prioritization for medium access control in wireless body area networks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11235-017-0349-5 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UTM//R.J130000.7828.4F859/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Ullah, F.; Abdullah, AH.; Kaiwartya, O.; Lloret, J.; Arshad, MM. (2020). EETP-MAC: energy efficient traffic prioritization for medium access control in wireless body area networks. Telecommunication Systems. 75(2):181-203. https://doi.org/10.1007/s11235-017-0349-5 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11235-017-0349-5 | es_ES |
dc.description.upvformatpinicio | 181 | es_ES |
dc.description.upvformatpfin | 203 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 75 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\473139 | es_ES |
dc.contributor.funder | University of Technology Malaysia | es_ES |
dc.description.references | W. H. O. (WHO). (2016). Chronic and Diabete Diseases by WHO 2016. [Online]. Available: http://www.who.int/chp/en/ . Accessed: 19-Mar-2016. | es_ES |
dc.description.references | Ullah, F., Abdullah, A. H., Kaiwartya, O. & Prakash, S., (2016). Patient data dissemination in wireless body area network: A qualitative analysis. In Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies, ACM, p. 71, Jaipur, India. | es_ES |
dc.description.references | Gündoğdu, K., & Çalhan, A. (2016). An implementation of wireless body area networks for improving priority data transmission delay. Journal of Medical Systems, 40(3), 75. | es_ES |
dc.description.references | Nadeem, A., Hussain, M. A., Owais, O., Salam, A., Iqbal, S., & Ahsan, K. (2015). Application specific study, analysis and classification of body area wireless sensor network applications. Computer Networks, 83, 363–380. | es_ES |
dc.description.references | Hiep, P. T. (2016). Spatial reuse superframe for high throughput cluster-based WBAN with CSMA/CA. Adhoc and Sensor Wireless Networks, 31, 69–78. | es_ES |
dc.description.references | Džaja, D., Varga, M., Šeketa, G., Žulj, S., Celić, L., Lacković, I., & Magjarević, R. (2015). System for assisted exercising and qualitative exercise assessment. In: I. D. Lacković & D. Vasic (Eds.), 6th European Conference of the International Federation for Medical and Biological Engineering. Springer, vol 45, pp. 682–286 | es_ES |
dc.description.references | Chao, H.-C., Zeadally, S., & Hu, B. (2016). Wearable computing for health care. Journal of Medical Systems, 40(4), 87. | es_ES |
dc.description.references | Nguyen, T., Pan, J., & Chu, S. (2016). Optimization localization in wireless sensor network based on multi-objective firefly algorithm. Journal of Network Intelligence, 1(4), 130–138. | es_ES |
dc.description.references | Movassaghi, S., Member, S., Abolhasan, M., & Member, S. (2014). Wireless body area networks?: A survey. IEEE Communications Surveys and Tutorials, 16(3), 1658–1686. | es_ES |
dc.description.references | Berrahal, S., Boudriga, N., & Chammem, M. (2016). Wban-assisted navigation for firefighters in indoor environments. Adhoc and Sensor Wireless Networks, 33, 81–119. | es_ES |
dc.description.references | Cavallari, R., Martelli, F., Rosini, R., Buratti, C., & Verdone, R. (2014). A survey on wireless body area networks: Technologies and design challenges. IEEE Communications Surveys and Tutorials, PP(3), 1–23. | es_ES |
dc.description.references | Bradai, N., Fourati, L. C., & Kamoun, L. (2014). Investigation and performance analysis of MAC protocols for WBAN networks. Journal of Network and Computer Applications, 46, 362–373. | es_ES |
dc.description.references | Quwaider, M., & Biswas, S. (2009). Probabilistic routing in on-body sensor networks with postural disconnections. In Proceedings of the 7th ACM international symposium on Mobility management and wireless access—MobiWAC ’09, pp. 149–158. | es_ES |
dc.description.references | Ullah, S. (2013). RFID-enabled MAC protocol for WBAN. In IEEE international conference on communications (ICC), pp. 6030–6034. | es_ES |
dc.description.references | Zhou, J., Guo, A., Xu, J., & Su, S. (2014). An optimal fuzzy control medium access in wireless body area networks. Neurocomputing, 142, 107–114. | es_ES |
dc.description.references | Yoon, J. S., Ahn, G.-S., Joo, S.-S., & Lee, M. J. (2010). PNP-MAC: Preemptive slot allocation and non-preemptive transmission for providing QoS in body area networks. In 2010 7th IEEE consumer communications and networking conference, pp. 1–5. | es_ES |
dc.description.references | IEEE_802.15.4. (2006). IEEE standard for information technology 802.15.4, wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs). | es_ES |
dc.description.references | Callaway, E., Gorday, P., Hester, L., Gutierrez, J. A., Naeve, M., Heile, B., et al. (2002). Home networking with IEEE 802.15.4: A developing standard for low-rate wireless personal area networks. IEEE Communications Magazine, 40(8), 70–77. | es_ES |
dc.description.references | Li, C., Hao, B., Zhang, K., Liu, Y., & Li, J. (2011). A novel medium access control protocol with low delay and traffic adaptivity for wireless body area networks. Journal of Medical Systems, 35(5), 1265–1275. | es_ES |
dc.description.references | Anjum, I., Alam, N., Razzaque, M. A., Hassan, M. M., & Alamri, A. (2013). Traffic priority and load adaptive MAC protocol for QoS provisioning in body sensor networks. International Journal of Distributed Sensor Networks, 2013, 1–9. | es_ES |
dc.description.references | Shuai, J., Zou, W., & Zhou, Z. (2013). Priority-based adaptive timeslot allocation scheme for wireless body area network. In 2013 13th international symposium on communications and information technologies (ISCIT), pp. 609–614. | es_ES |
dc.description.references | Javaid, N., Ahmad, A., Rahim, A., Khan, Z. A., Ishfaq, M., & Qasim, U. (2014). Adaptive Medium access control protocol for wireless body area networks. International Journal of Distributed Sensor Networks, 2014, 1–10. | es_ES |
dc.description.references | Rahman, M. O., Hong, C. S., Lee, S., & Bang, Y.-C. (2011). ATLAS: A traffic load aware sensor MAC design for collaborative body area sensor networks. Sensors (Basel, Switzerland), 11(12), 11560–11580. | es_ES |
dc.description.references | Nepal, S., Pudasaini, A., Pyun, J.-Y., Hwang, S.-S., Lee, C. G., & Shin, S. (2016). A New MAC Protocol for emergency handling in wireless body area networks. In 2016 Eighth international conference on ubiquitous and future networks (ICUFN), pp. 588–590. | es_ES |
dc.description.references | Bhandari, S., & Moh, S. (2016). A priority-based adaptive MAC protocol for wireless body area networks. Sensors, 16(3), 1–16. | es_ES |
dc.description.references | Li, C., Zhang, B., Yuan, X., Ullah, S., & Vasilakos, A. V. (2016). MC-MAC: a multi-channel based MAC scheme for interference mitigation in WBANs. Wireless Networks. doi: 10.1007/s11276-016-1366-0 . | es_ES |
dc.description.references | Zhang, J., Xie, Y., Liu, D., & Zhang, Z. (2012). OCTBR: Optimized clustering tree based routing protocol for wireless sensor networks. Internet of Things, 312, 192–199. | es_ES |
dc.description.references | Moravejosharieh, A., & Willig, A. (2016). Mutual interference in large populations of co-located IEEE 802.15.4 body sensor networks–A sensitivity analysis. Computer Communications, 000, 1–11. | es_ES |
dc.description.references | IEEE 802.15.4. (2006). IEEE standard for Information Technology 802.15.4, Wireless Medium Access Control (MAC) and Physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs). | es_ES |
dc.description.references | Jacobs, R. T., Coder, J. B., & Musser, V. M. (2016). Spectrum sensing with WLAN access points. In 2016 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), pp. 1–2. | es_ES |
dc.description.references | Sarkar, S., & Misra, S. (2016). From micro to nano: The evolution of wireless sensor-based health care. IEEE Pulse, 7(1), 21–25. | es_ES |
dc.description.references | Naranjo-Hernández, D., Roa, L. M., Reina-Tosina, J., Estudillo-Valderrama, M. A., & Barbarov, G. (2015). Low-power platform and communications for the development of wireless body sensor networks. International Journal of Distributed Sensor Networks, 2015, 1–13. | es_ES |
dc.description.references | Ullah, F., Khelil, A., Sheikh, A. a., Felemban, E., & Bojan, H. M. a. (2013). Towards automated self-tagging in emergency health cases. In 2013 IEEE 15th international conference on e-health networking, applications and services (Healthcom 2013), pp. 658–663. | es_ES |
dc.description.references | Liu, Y., Harn, L., & Chang, C. C. (2015). A novel verifiable secret sharing mechanism using theory of numbers and a method for sharing secrets. International Journal of Communication Systems, 28(7), 1282–1292. | es_ES |
dc.description.references | Kim, S., Lee, J.-H., & Eom, D.-S. (2014). An adaptive beaconing MAC protocol providing energy-efficient healthcare service. Wireless Personal Communications, 75(4), 1915–1936. | es_ES |