- -

EETP-MAC: energy efficient traffic prioritization for medium access control in wireless body area networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

EETP-MAC: energy efficient traffic prioritization for medium access control in wireless body area networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ullah, Fasee es_ES
dc.contributor.author Abdullah, Abdul Hanan es_ES
dc.contributor.author Kaiwartya, Omprakash es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Arshad, Marina Md es_ES
dc.date.accessioned 2022-11-07T16:34:48Z
dc.date.available 2022-11-07T16:34:48Z
dc.date.issued 2020-10 es_ES
dc.identifier.issn 1018-4864 es_ES
dc.identifier.uri http://hdl.handle.net/10251/189365
dc.description.abstract [EN] Wireless body area network (WBAN) has witnessed significant attentions in the healthcare domain using biomedical sensor-based monitoring of heterogeneous nature of vital signs of a patient's body. The design of frequency band, MAC superframe structure, and slots allocation to the heterogeneous nature of the patient's packets have become the challenging problems in WBAN due to the diverse QoS requirements. In this context, this paper proposes an Energy Efficient Traffic Prioritization for Medium Access Control (EETP-MAC) protocol, which provides sufficient slots with higher bandwidth and guard bands to avoid channels interference causing longer delay. Specifically, the design of EETP-MAC is broadly divided in to four folds. Firstly, patient data traffic prioritization is presented with broad categorization including Non-Constrained Data (NCD), Delay-Constrained Data (DCD), Reliability-Constrained Data (RCD) and Critical Data (CD). Secondly, a modified superframe structure design is proposed for effectively handling the traffic prioritization. Thirdly, threshold based slot allocation technique is developed to reduce contention by effectively quantifying criticality on patient data. Forth, an energy efficient frame design is presented focusing on beacon interval, superframe duration, and packet size and inactive period. Simulations are performed to comparatively evaluate the performance of the proposed EETP-MAC with the state-of-the-art MAC protocols. The comparative evaluation attests the benefit of EETP-MAC in terms of efficient slot allocation resulting in lower delay and energy consumption. es_ES
dc.description.sponsorship The research is supported by Ministry of Higher Education Malaysia (MOHE) and conducted in collaboration with Research Management Center (RMC) at University Teknologi Malaysia (UTM) under VOT NUMBER: R.J130000.7828.4F859 es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Telecommunication Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Wireless body area network es_ES
dc.subject Medium access control es_ES
dc.subject Energy efficient es_ES
dc.subject Traffic Prioritization es_ES
dc.title EETP-MAC: energy efficient traffic prioritization for medium access control in wireless body area networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11235-017-0349-5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UTM//R.J130000.7828.4F859/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Ullah, F.; Abdullah, AH.; Kaiwartya, O.; Lloret, J.; Arshad, MM. (2020). EETP-MAC: energy efficient traffic prioritization for medium access control in wireless body area networks. Telecommunication Systems. 75(2):181-203. https://doi.org/10.1007/s11235-017-0349-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11235-017-0349-5 es_ES
dc.description.upvformatpinicio 181 es_ES
dc.description.upvformatpfin 203 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 75 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\473139 es_ES
dc.contributor.funder University of Technology Malaysia es_ES
dc.description.references W. H. O. (WHO). (2016). Chronic and Diabete Diseases by WHO 2016. [Online]. Available: http://www.who.int/chp/en/ . Accessed: 19-Mar-2016. es_ES
dc.description.references Ullah, F., Abdullah, A. H., Kaiwartya, O. & Prakash, S., (2016). Patient data dissemination in wireless body area network: A qualitative analysis. In Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies, ACM, p. 71, Jaipur, India. es_ES
dc.description.references Gündoğdu, K., & Çalhan, A. (2016). An implementation of wireless body area networks for improving priority data transmission delay. Journal of Medical Systems, 40(3), 75. es_ES
dc.description.references Nadeem, A., Hussain, M. A., Owais, O., Salam, A., Iqbal, S., & Ahsan, K. (2015). Application specific study, analysis and classification of body area wireless sensor network applications. Computer Networks, 83, 363–380. es_ES
dc.description.references Hiep, P. T. (2016). Spatial reuse superframe for high throughput cluster-based WBAN with CSMA/CA. Adhoc and Sensor Wireless Networks, 31, 69–78. es_ES
dc.description.references Džaja, D., Varga, M., Šeketa, G., Žulj, S., Celić, L., Lacković, I., & Magjarević, R. (2015). System for assisted exercising and qualitative exercise assessment. In: I. D. Lacković & D. Vasic (Eds.), 6th European Conference of the International Federation for Medical and Biological Engineering. Springer, vol 45, pp. 682–286 es_ES
dc.description.references Chao, H.-C., Zeadally, S., & Hu, B. (2016). Wearable computing for health care. Journal of Medical Systems, 40(4), 87. es_ES
dc.description.references Nguyen, T., Pan, J., & Chu, S. (2016). Optimization localization in wireless sensor network based on multi-objective firefly algorithm. Journal of Network Intelligence, 1(4), 130–138. es_ES
dc.description.references Movassaghi, S., Member, S., Abolhasan, M., & Member, S. (2014). Wireless body area networks?: A survey. IEEE Communications Surveys and Tutorials, 16(3), 1658–1686. es_ES
dc.description.references Berrahal, S., Boudriga, N., & Chammem, M. (2016). Wban-assisted navigation for firefighters in indoor environments. Adhoc and Sensor Wireless Networks, 33, 81–119. es_ES
dc.description.references Cavallari, R., Martelli, F., Rosini, R., Buratti, C., & Verdone, R. (2014). A survey on wireless body area networks: Technologies and design challenges. IEEE Communications Surveys and Tutorials, PP(3), 1–23. es_ES
dc.description.references Bradai, N., Fourati, L. C., & Kamoun, L. (2014). Investigation and performance analysis of MAC protocols for WBAN networks. Journal of Network and Computer Applications, 46, 362–373. es_ES
dc.description.references Quwaider, M., & Biswas, S. (2009). Probabilistic routing in on-body sensor networks with postural disconnections. In Proceedings of the 7th ACM international symposium on Mobility management and wireless access—MobiWAC ’09, pp. 149–158. es_ES
dc.description.references Ullah, S. (2013). RFID-enabled MAC protocol for WBAN. In IEEE international conference on communications (ICC), pp. 6030–6034. es_ES
dc.description.references Zhou, J., Guo, A., Xu, J., & Su, S. (2014). An optimal fuzzy control medium access in wireless body area networks. Neurocomputing, 142, 107–114. es_ES
dc.description.references Yoon, J. S., Ahn, G.-S., Joo, S.-S., & Lee, M. J. (2010). PNP-MAC: Preemptive slot allocation and non-preemptive transmission for providing QoS in body area networks. In 2010 7th IEEE consumer communications and networking conference, pp. 1–5. es_ES
dc.description.references IEEE_802.15.4. (2006). IEEE standard for information technology 802.15.4, wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs). es_ES
dc.description.references Callaway, E., Gorday, P., Hester, L., Gutierrez, J. A., Naeve, M., Heile, B., et al. (2002). Home networking with IEEE 802.15.4: A developing standard for low-rate wireless personal area networks. IEEE Communications Magazine, 40(8), 70–77. es_ES
dc.description.references Li, C., Hao, B., Zhang, K., Liu, Y., & Li, J. (2011). A novel medium access control protocol with low delay and traffic adaptivity for wireless body area networks. Journal of Medical Systems, 35(5), 1265–1275. es_ES
dc.description.references Anjum, I., Alam, N., Razzaque, M. A., Hassan, M. M., & Alamri, A. (2013). Traffic priority and load adaptive MAC protocol for QoS provisioning in body sensor networks. International Journal of Distributed Sensor Networks, 2013, 1–9. es_ES
dc.description.references Shuai, J., Zou, W., & Zhou, Z. (2013). Priority-based adaptive timeslot allocation scheme for wireless body area network. In 2013 13th international symposium on communications and information technologies (ISCIT), pp. 609–614. es_ES
dc.description.references Javaid, N., Ahmad, A., Rahim, A., Khan, Z. A., Ishfaq, M., & Qasim, U. (2014). Adaptive Medium access control protocol for wireless body area networks. International Journal of Distributed Sensor Networks, 2014, 1–10. es_ES
dc.description.references Rahman, M. O., Hong, C. S., Lee, S., & Bang, Y.-C. (2011). ATLAS: A traffic load aware sensor MAC design for collaborative body area sensor networks. Sensors (Basel, Switzerland), 11(12), 11560–11580. es_ES
dc.description.references Nepal, S., Pudasaini, A., Pyun, J.-Y., Hwang, S.-S., Lee, C. G., & Shin, S. (2016). A New MAC Protocol for emergency handling in wireless body area networks. In 2016 Eighth international conference on ubiquitous and future networks (ICUFN), pp. 588–590. es_ES
dc.description.references Bhandari, S., & Moh, S. (2016). A priority-based adaptive MAC protocol for wireless body area networks. Sensors, 16(3), 1–16. es_ES
dc.description.references Li, C., Zhang, B., Yuan, X., Ullah, S., & Vasilakos, A. V. (2016). MC-MAC: a multi-channel based MAC scheme for interference mitigation in WBANs. Wireless Networks. doi: 10.1007/s11276-016-1366-0 . es_ES
dc.description.references Zhang, J., Xie, Y., Liu, D., & Zhang, Z. (2012). OCTBR: Optimized clustering tree based routing protocol for wireless sensor networks. Internet of Things, 312, 192–199. es_ES
dc.description.references Moravejosharieh, A., & Willig, A. (2016). Mutual interference in large populations of co-located IEEE 802.15.4 body sensor networks–A sensitivity analysis. Computer Communications, 000, 1–11. es_ES
dc.description.references IEEE 802.15.4. (2006). IEEE standard for Information Technology 802.15.4, Wireless Medium Access Control (MAC) and Physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs). es_ES
dc.description.references Jacobs, R. T., Coder, J. B., & Musser, V. M. (2016). Spectrum sensing with WLAN access points. In 2016 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), pp. 1–2. es_ES
dc.description.references Sarkar, S., & Misra, S. (2016). From micro to nano: The evolution of wireless sensor-based health care. IEEE Pulse, 7(1), 21–25. es_ES
dc.description.references Naranjo-Hernández, D., Roa, L. M., Reina-Tosina, J., Estudillo-Valderrama, M. A., & Barbarov, G. (2015). Low-power platform and communications for the development of wireless body sensor networks. International Journal of Distributed Sensor Networks, 2015, 1–13. es_ES
dc.description.references Ullah, F., Khelil, A., Sheikh, A. a., Felemban, E., & Bojan, H. M. a. (2013). Towards automated self-tagging in emergency health cases. In 2013 IEEE 15th international conference on e-health networking, applications and services (Healthcom 2013), pp. 658–663. es_ES
dc.description.references Liu, Y., Harn, L., & Chang, C. C. (2015). A novel verifiable secret sharing mechanism using theory of numbers and a method for sharing secrets. International Journal of Communication Systems, 28(7), 1282–1292. es_ES
dc.description.references Kim, S., Lee, J.-H., & Eom, D.-S. (2014). An adaptive beaconing MAC protocol providing energy-efficient healthcare service. Wireless Personal Communications, 75(4), 1915–1936. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem