- -

Offensive keyword extraction based on the attention mechanism of BERT and the eigenvector centrality using a graph representation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Offensive keyword extraction based on the attention mechanism of BERT and the eigenvector centrality using a graph representation

Mostrar el registro completo del ítem

Peña-Sarracén, GLDL.; Rosso, P. (2021). Offensive keyword extraction based on the attention mechanism of BERT and the eigenvector centrality using a graph representation. Personal and Ubiquitous Computing. 1-13. https://doi.org/10.1007/s00779-021-01605-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/189377

Ficheros en el ítem

Metadatos del ítem

Título: Offensive keyword extraction based on the attention mechanism of BERT and the eigenvector centrality using a graph representation
Autor: Peña-Sarracén, Gretel Liz de la Rosso, Paolo
Fecha difusión:
Resumen:
[EN] The proliferation of harmful content on social media affects a large part of the user community. Therefore, several approaches have emerged to control this phenomenon automatically. However, this is still a quite ...[+]
Palabras clave: Unsupervised keyword extraction , Offensive language detection , Attention mechanism , Graph representation
Derechos de uso: Reserva de todos los derechos
Fuente:
Personal and Ubiquitous Computing. (issn: 1617-4909 )
DOI: 10.1007/s00779-021-01605-5
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s00779-021-01605-5
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096212-B-C31/ES/DESINFORMACION Y AGRESIVIDAD EN SOCIAL MEDIA: AGREGANDO INFORMACION Y ANALIZANDO EL LENGUAJE/
Tipo: Artículo

References

Ao X, Yu X, Liu D, Tian H (2020) News keywords extraction algorithm based on textrank and classified TF-IDF. In: 2020 international wireless communications and mobile computing (IWCMC). IEEE, pp 1364–1369

Basile V, Bosco C, Fersini E, Debora N, Patti V, Pardo FMR, Rosso P, Sanguinetti M, et al. (2019) Semeval-2019 task 5: multilingual detection of hate speech against immigrants and women in twitter. In: 13th international workshop on semantic evaluation. Association for Computational Linguistics, pp 54–63

Berry MW, Kogan J (2010) Text mining: applications and theory. John Wiley & Sons, New York [+]
Ao X, Yu X, Liu D, Tian H (2020) News keywords extraction algorithm based on textrank and classified TF-IDF. In: 2020 international wireless communications and mobile computing (IWCMC). IEEE, pp 1364–1369

Basile V, Bosco C, Fersini E, Debora N, Patti V, Pardo FMR, Rosso P, Sanguinetti M, et al. (2019) Semeval-2019 task 5: multilingual detection of hate speech against immigrants and women in twitter. In: 13th international workshop on semantic evaluation. Association for Computational Linguistics, pp 54–63

Berry MW, Kogan J (2010) Text mining: applications and theory. John Wiley & Sons, New York

Boudin F (2013) A comparison of centrality measures for graph-based keyphrase extraction. In: Proceedings of the sixth international joint conference on natural language processing, pp 834–838

Brin S, Page L (1998) The anatomy of a large-scale hypertextual Web search engine. In: Proceedings of the seventh international conference on World Wide Web, pp 107–117

Büttcher S, Clarke CL, Cormack GV (2016) Information retrieval: implementing and evaluating search engines. Mit Press, Cambridge

Casula C, Aprosio AP, Menini S, Tonelli S (2020) Fbk-dh at semeval-2020 task 12: using multi-channel bert for multilingual offensive language detection. In: Proceedings of the fourteenth workshop on semantic evaluation, pp 1539–1545

Chaudhari S, Polatkan G, Ramanath R, Mithal V (2019) An attentive survey of attention models. arXiv:1904.02874

Dai W, Yu T, Liu Z, Fung P (2020) Kungfupanda at semeval-2020 task 12: Bert-based multi-task learning for offensive language detection. arXiv:2004.13432

Devlin J, Chang MW, Lee K, Toutanova K (2018) Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805

Fersini E, Rosso P, Anzovino M (2018) Overview of the task on automatic misogyny identification at IberEval 2018. IberEval@ SEPLN 2150:214–228

Firoozeh N, Nazarenko A, Alizon F, Daille B (2020) Keyword extraction: issues and methods. Nat Lang Eng 26(3):259–291

Hasan KS, Ng V (2014) Automatic keyphrase extraction: a survey of the state of the art. In: Proceedings of the 52nd annual meeting of the association for computational linguistics (Volume 1: Long Papers), pp 1262–1273

Hu X, Wu B (2006) Automatic keyword extraction using linguistic features. In: Sixth IEEE international conference on data mining-workshops (ICDMW’06). IEEE, pp 19–23

Kathait SS, Tiwari S, Varshney A, Sharma A (2017) Unsupervised key-phrase extraction using noun phrases. Int J Comput Appl 162(1)

Kaur J, Gupta V (2010) Effective approaches for extraction of keywords. Int J Comput Sci Issues (IJCSI) 7(6):144

Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv:1412.6980

Mandl T, Modha S, Majumder P, Patel D, Dave M, Mandlia C, Patel A (2019) Overview of the HASOC track at FIRE 2019: hate speech and offensive content identification in indo-european languages. In: Proceedings of the 11th forum for information retrieval evaluation, pp 14–17

Mihalcea R, Tarau P (2004) Textrank: bringing order into text. In: Proceedings of the 2004 conference on empirical methods in natural language processing, pp 404–411

Nasar Z, Jaffry SW, Malik MK (2019) Textual keyword extraction and summarization: state-of-the-art. Inf Process Manag 56(6):102088

Newman ME (2008) The mathematics of networks. New Palgrave Encycl Econ 2(2008):1–12

Pappagari R, Zelasko P, Villalba J, Carmiel Y, Dehak N (2019) Hierarchical transformers for long document classification. In: 2019 IEEE automatic speech recognition and understanding workshop (ASRU). IEEE, pp 838–844

De la Pena Sarracén GL, Rosso P (2020) Prhlt-upv at semeval-2020 task 12: Bert for multilingual offensive language detection. In: Proceedings of the fourteenth workshop on semantic evaluation, pp 1605–1614

Pitsilis GK, Ramampiaro H, Langseth H (2018) Detecting offensive language in tweets using deep learning. arXiv:1801.04433

Poletto F, Basile V, Sanguinetti M, Bosco C, Patti V (2020) Resources and benchmark corpora for hate speech detection: a systematic review. Lang Resour Eval pp 1–47

Robertson SE, Walker S, Jones S, Hancock-Beaulieu MM, Gatford M, et al. (1995) Okapi at trec-3. Nist Spec Publ 109:109

Rosenthal S, Atanasova P, Karadzhov G, Zampieri M, Nakov P (2020) A large-scale semi-supervised dataset for offensive language identification. arXiv:2004.14454

Sahrawat D, Mahata D, Kulkarni M, Zhang H, Gosangi R, Stent A, Sharma A, Kumar Y, Shah RR, Zimmermann R (2019) Keyphrase extraction from scholarly articles as sequence labeling using contextualized embeddings. arXiv:1910.08840

Uglow H, Zlocha M, Zmyślony S (2019) An exploration of state-of-the-art methods for offensive language detection. arXiv:1903.07445

Vashistha N, Zubiaga A (2020) Online multilingual hate speech detection: experimenting with Hindi and English social media

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. In: Advances in neural information processing systems, pp 5998–6008

Wang S, Liu J, Ouyang X, Sun Y (2020) Galileo at semeval-2020 task 12: multi-lingual learning for offensive language identification using pre-trained language models. arXiv:2010.03542

Wani AH, Molvi NS, Ashraf SI (2019) Detection of hate and offensive speech in text. In: International conference on intelligent human computer interaction. Springer, pp 87–93

Wiedemann G, Yimam SM, Biemann C (2020) Uhh-lt at semeval-2020 task 12: fine-tuning of pre-trained transformer networks for offensive language detection. In: Proceedings of the fourteenth workshop on semantic evaluation, pp 1638–1644

Wiegand M, Ruppenhofer J, Kleinbauer T (2019) Detection of abusive language: the problem of biased datasets. In: Proceedings of the 2019 conference of the North American Chapter of the Association for Computational Linguistics: human language technologies, volume 1 (long and short papers), pp 602–608

Witten IH, Paynter GW, Frank E, Gutwin C, Nevill-Manning CG (2005) KEA: practical automated keyphrase extraction. In: Design and usability of digital libraries: case studies in the asia pacific. IGI Global, pp 129–152

Zampieri M, Malmasi S, Nakov P, Rosenthal S, Farra N, Kumar R (2019) Predicting the type and target of offensive posts in social media. In: Proceedings of the 2019 conference of the north american chapter of the association for computational linguistics (NAACL), pp 1415–1420

Zampieri M, Malmasi S, Nakov P, Rosenthal S, Farra N, Kumar R (2019) Predicting the type and target of offensive posts in social media. arXiv:1902.09666

Zampieri M, Malmasi S, Nakov P, Rosenthal S, Farra N, Kumar R (2019) Semeval-2019 task 6: identifying and categorizing offensive language in social media (offenseval). arXiv:1903.08983

Zampieri M, Nakov P, Rosenthal S, Atanasova P, Karadzhov G, Mubarak H, Derczynski L, Pitenis Z, Çöltekin Ç (2020) Semeval-2020 task 12: multilingual offensive language identification in social media (offenseval 2020). arXiv:2006.07235

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem