Mostrar el registro sencillo del ítem
dc.contributor.author | Jiménez Bello, Miguel Angel | es_ES |
dc.contributor.author | Alonso Campos, J. C. | es_ES |
dc.contributor.author | Manzano Juarez, Juan | es_ES |
dc.contributor.author | Martínez Alzamora, Fernando | es_ES |
dc.date.accessioned | 2022-11-07T19:01:41Z | |
dc.date.available | 2022-11-07T19:01:41Z | |
dc.date.issued | 2021-05 | es_ES |
dc.identifier.issn | 0342-7188 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/189383 | |
dc.description.abstract | [EN] Pressurised irrigation networks with a certain degree of automation allow centralized fertigation and maintenance operations such as cleaning subunits and preventing the proliferation of invasive species such as zebra mussels. Until now, there is no methodology that guarantees the total cleaning of the network of a substance in the shortest possible time. In the same way, it does not exist to guarantee reaching all consumption points with a certain concentration of a substance, injecting the minimum possible amount. For that purpose, a general novel methodology has been developed that makes use of the network¿s hydraulic model and parallel multi-objective genetic algorithms to flush the network of a certain substance or to get it to all consumption points in the shortest possible time and supplying a minimum volume. This method assumes that the available pressure at the source is always over a minimum value. The arrival times to the consumption points are minimized and the injected volume is reduced to the minimum of replacement, that is, the volume of the network pipes. The methodology applied to the study case allowed the entire network to be flushed in a minimum time of 2.46 h. On a normal irrigation day, without making any changes to the irrigation schedule the time to completely flush the network is 11.76 h. Furthermore, the injected volume differs greatly from the total volume of the pipes. | es_ES |
dc.description.sponsorship | This study has been partially supported by the ADAPTAMED project (RTI2018-101483-B-I00), funded by the Ministerio de Economia y Competitividad (MINECO) of Spain and with EU FEDER funds. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Irrigation Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Irrigation networks | es_ES |
dc.subject | Fertigation | es_ES |
dc.subject | Flushing | es_ES |
dc.subject | Tracing | es_ES |
dc.subject | Zebra mussels | es_ES |
dc.title | Methodology for flushing pressurised irrigation networks for fertigation and operation maintenance purposes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00271-021-00724-4 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101483-B-I00/ES/PLANIFICACION, DISEÑO Y EVALUACION DE LA ADAPTACION DE CUENCAS MEDITERRANEAS A ESCENARIOS SOCIOECONOMICOS Y DE CAMBIO CLIMATICO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Jiménez Bello, MA.; Alonso Campos, JC.; Manzano Juarez, J.; Martínez Alzamora, F. (2021). Methodology for flushing pressurised irrigation networks for fertigation and operation maintenance purposes. Irrigation Science. 39(3):375-384. https://doi.org/10.1007/s00271-021-00724-4 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00271-021-00724-4 | es_ES |
dc.description.upvformatpinicio | 375 | es_ES |
dc.description.upvformatpfin | 384 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 39 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\433019 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Aldridge DC, Elliott P, Moggridge GD (2004) The recent and rapid spread of the zebra mussel (Dreissena polymorpha) in Great Britain. Biol Conserv 119:253–261. https://doi.org/10.1016/j.biocon.2003.11.008 | es_ES |
dc.description.references | Alonso Campos JC, Jiménez-Bello MA, Martínez Alzamora F (2020a) Real-time energy optimization of irrigation scheduling by parallel multi-objective genetic algorithms. Agric Water Manag. https://doi.org/10.1016/j.agwat.2019.105857 | es_ES |
dc.description.references | Alva AK, Mattos D, Quaggio JA (2008) Advances in nitrogen fertigation of citrus. J Crop Improv 22:121–146. https://doi.org/10.1080/15427520802072967 | es_ES |
dc.description.references | Azad N, Behmanesh J, Rezaverdinejad V et al (2018) Developing an optimization model in drip fertigation management to consider environmental issues and supply plant requirements. Agric Water Manag 208:344–356. https://doi.org/10.1016/j.agwat.2018.06.030 | es_ES |
dc.description.references | Bracy RP, Parish RL, Rosendale RM (2003) Fertigation uniformity affected by injector type. HortTechnology 13:103–105. https://doi.org/10.21273/horttech.13.1.0103 | es_ES |
dc.description.references | Burt C (1998) Fertigation. Irrigation Training and Research Center California Polytechnic State University, San Luis Obispo | es_ES |
dc.description.references | CAJAMAR (2014) Limpieza de la instalación de riego. Boletín nº 114. https://www.cajamar.es/pdf/bd/agroalimentario/innovacion/investigacion/documentos-y-programas/boletin-huerto-114-1496655961.pdf | es_ES |
dc.description.references | Confederación hidrográfica del Ebro (2014) Mejillón cebra; Manual de control para instalaciones afectadas. 2ª ed. Zaragoza, p 42. http://www.chebro.es/contenido.streamFichero.do?idBinario=18109 | es_ES |
dc.description.references | Davis MJ, Janke R, Taxon TN (2018) Mass imbalances in EPANET water-quality simulations. Drink Water Eng Sci 11:25–47. https://doi.org/10.5194/dwes-11-25-2018 | es_ES |
dc.description.references | Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197. https://doi.org/10.1109/4235.996017 | es_ES |
dc.description.references | Durillo JJ, Nebro AJ (2011) JMetal: a Java framework for multi-objective optimization. Adv Eng Softw 42:760–771. https://doi.org/10.1016/j.advengsoft.2011.05.014 | es_ES |
dc.description.references | Fan J, Wu L, Zhang F et al (2017) Evaluation of drip fertigation uniformity affected by injector type, pressure difference and lateral layout. Irrig Drain 66:520–529. https://doi.org/10.1002/ird.2136 | es_ES |
dc.description.references | Fares A, Abbas F, Deb SK, Paramasivam S (2009) Citrus chemigation. In: Tree and forestry science and biotechnology, vol 3, special issue 1. Global Science Books, pp 22–31 | es_ES |
dc.description.references | Fernández García I, Rodríguez Díaz JA, Camacho Poyato E, Montesinos P (2013) Optimal operation of pressurized irrigation networks with several supply sources. Water Resour Manag 27:2855–2869. https://doi.org/10.1007/s11269-013-0319-y | es_ES |
dc.description.references | Fernández García I, Montesinos P, Camacho Poyato E, Rodríguez Díaz JA (2017) Optimal design of pressurized irrigation networks to minimize the operational cost under different management scenarios. Water Resour Manag 31:1995–2010. https://doi.org/10.1007/s11269-017-1629-2 | es_ES |
dc.description.references | Gallardo B, Aldridge DC (2020) Priority setting for invasive species management by the water industry. Water Res 23:115771. https://doi.org/10.1016/j.watres.2020.115771 | es_ES |
dc.description.references | González Perea R, Moreno MA, Ortega JF et al (2020) Dynamic simulation tool of fertigation in drip irrigation subunits. Comput Electron Agric 173:105434. https://doi.org/10.1016/j.compag.2020.105434 | es_ES |
dc.description.references | Iglesias-Rey PL, Martínez-Solano FJ, Ribelles-Aquilar JV (2017) Extending EPANET capabilities with add-in tools. In: Procedia engineering. Elsevier Ltd, pp 626–634 | es_ES |
dc.description.references | Jiménez-Bello MA, Martínez Alzamora F, Bou Soler V, Ayala HJB (2010) Methodology for grouping intakes of pressurised irrigation networks into sectors to minimise energy consumption. Biosyst Eng 105:429–438. https://doi.org/10.1016/j.biosystemseng.2009.12.014 | es_ES |
dc.description.references | Jiménez-Bello MA, Alzamora FM, Castel JR, Intrigliolo DS (2011a) Validation of a methodology for grouping intakes of pressurized irrigation networks into sectors to minimize energy consumption. Agric Water Manag 102:46–53. https://doi.org/10.1016/j.agwat.2011.10.005 | es_ES |
dc.description.references | Jimenez-Bello MA, Martínez F, Bou V, Bartolín H (2011b) Analysis, assessment, and improvement of fertilizer distribution in pressure irrigation systems. Irrig Sci 29:45–53. https://doi.org/10.1007/s00271-010-0215-7 | es_ES |
dc.description.references | Jiménez-Bello MA, Royuela A, Manzano J et al (2015) Methodology to improve water and energy use by proper irrigation scheduling in pressurised networks. Agric Water Manag 149:91–101. https://doi.org/10.1016/j.agwat.2014.10.026 | es_ES |
dc.description.references | Keller J, Bliesner RD (1990) Sprinkle and trickle irrigation. Van Nostrand Reinhold, New York, pp 652 | es_ES |
dc.description.references | Li J, Meng Y, Li B (2007) Field evaluation of fertigation uniformity as affected by injector type and manufacturing variability of emitters. Irrig Sci 25:117–125. https://doi.org/10.1007/s00271-006-0039-7 | es_ES |
dc.description.references | Morales-Hernández M, Playán E, Gimeno Y et al (2018) Assessing zebra mussel colonization of collective pressurized irrigation networks through pressure measurements and simulations. Agric Water Manag 204:301–313. https://doi.org/10.1016/j.agwat.2018.04.025 | es_ES |
dc.description.references | Moreira Barradas JM, Matula S, Dolezal F (2012) A decision support system-fertigation simulator (DSS-FS) for design and optimization of sprinkler and drip irrigation systems. Comput Electron Agric 86:111–119. https://doi.org/10.1016/j.compag.2012.02.015 | es_ES |
dc.description.references | Ortega-Reig M, Sanchis-Ibor C, Palau-Salvador G et al (2017) Institutional and management implications of drip irrigation introduction in collective irrigation systems in Spain. Agric Water Manag 187:164–172. https://doi.org/10.1016/j.agwat.2017.03.009 | es_ES |
dc.description.references | Reca J, Martínez J (2006) Genetic algorithms for the design of looped irrigation water distribution networks. Water Resour Res. https://doi.org/10.1029/2005WR004383 | es_ES |
dc.description.references | Rossman LA (2000) EPANET 2: users manual. National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, pp 300 | es_ES |
dc.subject.ods | 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible | es_ES |