- -

Interaction of two MADS-box genes leads to growth phenotype divergence of all-flesh type of tomatoes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Interaction of two MADS-box genes leads to growth phenotype divergence of all-flesh type of tomatoes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Huang, Baowen es_ES
dc.contributor.author Hu, Guojian es_ES
dc.contributor.author Wang, Keke es_ES
dc.contributor.author Frasse, Pierre es_ES
dc.contributor.author Maza, Elie es_ES
dc.contributor.author Djari, Anis es_ES
dc.contributor.author Deng, Wei es_ES
dc.contributor.author Pirrello, Julien es_ES
dc.contributor.author Burlat, Vincent es_ES
dc.contributor.author Pons Puig, Clara es_ES
dc.contributor.author GRANELL RICHART, ANTONIO es_ES
dc.contributor.author Li, Zhengguo es_ES
dc.contributor.author van der Rest, Benoit es_ES
dc.contributor.author Bouzayen, Mondher es_ES
dc.date.accessioned 2022-11-07T19:02:13Z
dc.date.available 2022-11-07T19:02:13Z
dc.date.issued 2021-11-25 es_ES
dc.identifier.issn 2041-1723 es_ES
dc.identifier.uri http://hdl.handle.net/10251/189409
dc.description.abstract [EN] All-flesh tomato cultivars are devoid of locular gel and exhibit enhanced firmness and improved postharvest storage. Here, we show that SlMBP3 is a master regulator of locular tissue in tomato fruit and that a deletion at the gene locus underpins the All-flesh trait. Intriguingly, All-flesh varieties lack the deleterious phenotypes reported previously for SlMBP3 under-expressing lines and which preclude any potential commercial use. We resolve the causal factor for this phenotypic divergence through the discovery of a natural mutation at the SlAGL11 locus, a close homolog of SlMBP3. Misexpressing SlMBP3 impairs locular gel formation through massive transcriptomic reprogramming at initial phases of fruit development. SlMBP3 influences locule gel formation by controlling cell cycle and cell expansion genes, indicating that important components of fruit softening are determined at early pre-ripening stages. Our findings define potential breeding targets for improved texture in tomato and possibly other fleshy fruits. The all-flesh type of tomato fruits is caused by mutation of the MBP3 gene, however, knocking down MBP3 in certain genotypes also affect plant and fruit development. Here, the authors show that a natural mutation of AGL11, a close homolog of MBP3, is responsible for the phenotypic divergence. es_ES
dc.description.sponsorship The authors are grateful to L. Lemonnier and D. Saint-Martin for transformation and cultivation of tomato plants and GeT-PlaGe core facility (INRAe Toulouse) for ChIP deep sequencing. The authors also want to thank Dr. Christian Chevalier (INRAE et Univsersite de Bordeaux) for helping in analyzing genes related to cell cycle, cell division, and endoreduplication in tomato. This research was supported by the EU H2020 TomGEM 679796 and HARNESSTOM 101000716 projects. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Communications es_ES
dc.rights Reconocimiento (by) es_ES
dc.title Interaction of two MADS-box genes leads to growth phenotype divergence of all-flesh type of tomatoes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41467-021-27117-7 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/101000716/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/679796/EU es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Huang, B.; Hu, G.; Wang, K.; Frasse, P.; Maza, E.; Djari, A.; Deng, W.... (2021). Interaction of two MADS-box genes leads to growth phenotype divergence of all-flesh type of tomatoes. Nature Communications. 12(1):1-14. https://doi.org/10.1038/s41467-021-27117-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41467-021-27117-7 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 34824241 es_ES
dc.identifier.pmcid PMC8616914 es_ES
dc.relation.pasarela S\459179 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Klee, H. J. & Giovannoni, J. J. Genetics and control of tomato fruit ripening and quality attributes. Annu. Rev. Genet. 45, 41–59 (2011). es_ES
dc.description.references Osorio, S. et al. Genetic and metabolic effects of ripening mutations and vine detachment on tomato fruit quality. Plant Biotechnol. J. 18, 106–118 (2020). es_ES
dc.description.references Shi, Y. et al. A tomato LATERAL ORGAN BOUNDARIES transcription factor, SlLOB1, predominantly regulates cell wall and softening components of ripening. Proc. Natl Acad. Sci. 118, e2102486118 (2021). es_ES
dc.description.references Wang, D., Yeats, T. H., Uluisik, S., Rose, J. K. C. & Seymour, G. B. Fruit softening: revisiting the role of pectin. Trends Plant Sci. 23, 302–310 (2018). es_ES
dc.description.references Uluisik, S. et al. Genetic improvement of tomato by targeted control of fruit softening. Nat. Biotechnol. 34, 950–952 (2016). es_ES
dc.description.references Musseau, C. et al. Identification of two new mechanisms that regulate fruit growth by cell expansion in tomato. Front. Plant Sci. 8, 1–15 (2017). es_ES
dc.description.references Pattison, R. J. et al. Comprehensive tissue-specific transcriptome analysis reveals distinct regulatory programs during early tomato fruit development. Plant Physiol. 168, 1684–1701 (2015). es_ES
dc.description.references Mounet, F. et al. Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development. Plant Physiol. 149, 1505–1528 (2009). es_ES
dc.description.references Lemaire-Chamley, M. et al. Changes in transcriptional profiles are associated with early fruit tissue specialization in tomato. Plant Physiol. 139, 750–769 (2005). es_ES
dc.description.references Cheng, G. W. & Huber, D. J. Alterations in structural polysaccharides during liquefaction of tomato locule tissue. Plant Physiol. 111, 447–457 (1996). es_ES
dc.description.references Vrebalov, J. et al. Fleshy fruit expansion and ripening are regulated by the tomato SHATTERPROOF gene TAGL1. Plant Cell 21, 3041–3062 (2009). es_ES
dc.description.references Giménez, E. et al. Transcriptional activity of the MADS box ARLEQUIN/TOMATO AGAMOUS-LIKE1 gene is required for cuticle development of tomato fruit. Plant Physiol. 168, 1036–1048 (2015). es_ES
dc.description.references Schilling, S., Pan, S., Kennedy, A. & Melzer, R. MADS-box genes and crop domestication: the jack of all traits. J. Exp. Bot. 69, 1447–1469 (2018). es_ES
dc.description.references Ezquer, I. et al. The developmental regulator SEEDSTICK controls structural and mechanical properties of the Arabidopsis seed coat. Plant Cell 28, 2478–2492 (2016). es_ES
dc.description.references Singh, R. et al. The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK. Nature 500, 340–344 (2013). es_ES
dc.description.references Zhang, J. et al. An AGAMOUS MADS-box protein, SlMBP3, regulates the speed of placenta liquefaction and controls seed formation in tomato. J. Exp. Bot. 70, 909–924 (2019). es_ES
dc.description.references Pinyopich, A. et al. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424, 85–88 (2003). es_ES
dc.description.references Favaro, R. et al. MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15, 2603–2611 (2003). es_ES
dc.description.references Huang, B. et al. Overexpression of the class D MADS-box gene Sl-AGL11 impacts fleshy tissue differentiation and structure in tomato fruits. J. Exp. Bot. 68, 4869–4884 (2017). es_ES
dc.description.references Lemaire-Chamley, M. et al. NMR-Based tissular and developmental metabolomics of tomato fruit. Metabolites 9, 93 (2019). es_ES
dc.description.references Fujisawa, M. et al. Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins. Plant Cell 26, 89–101 (2014). es_ES
dc.description.references Fernandez-Pozo, N. et al. The tomato expression atlas. Bioinformatics 33, 2397–2398 (2017). es_ES
dc.description.references Mathieu-Rivet, E. et al. Functional analysis of the anaphase promoting complex activator CCS52A highlights the crucial role of endo-reduplication for fruit growth in tomato. Plant J. 62, 727–741 (2010). es_ES
dc.description.references Chevalier, C. et al. Endoreduplication and fruit growth in tomato: evidence in favour of the karyoplasmic ratio theory. J. Exp. Bot. 65, 2731–2746 (2014). es_ES
dc.description.references Perrot-Rechenmann, C. Cellular responses to auxin: division versus expansion. Cold Spring Harb. Perspect. Biol. 2, a001446–a001446 (2010). es_ES
dc.description.references Seo, D. H., Jeong, H., Choi, Y. Do & Jang, G. Auxin controls the division of root endodermal cells. Plant Physiol. 0, 1–10 (2021). es_ES
dc.description.references Liu, L. et al. All-flesh fruit in tomato is controlled by reduced expression dosage of AFF through a structural variant mutation in the promoter. J. Exp. Bot. https://doi.org/10.1093/jxb/erab401 (2021). es_ES
dc.description.references Heijmans, K. et al. Redefining C and D in the petunia ABC. Plant Cell 24, 2305–2317 (2012). es_ES
dc.description.references Brooks, C., Nekrasov, V., Lippman, Z. B. & Van Eck, J. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol. 166, 1292–1297 (2014). es_ES
dc.description.references Sarrion-Perdigones, A. et al. Goldenbraid 2.0: a comprehensive DNA assembly framework for plant synthetic biology. Plant Physiol. 162, 1618–1631 (2013). es_ES
dc.description.references Chen, Y. et al. Roles of SlETR7, a newly discovered ethylene receptor, in tomato plant and fruit development. Hortic. Res. 7, 17 (2020). es_ES
dc.description.references Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009). es_ES
dc.description.references Auwera, G. A. et al. From FastQ data to high‐confidence variant calls: the genome analysis toolkit best practices pipeline. Curr. Protoc. Bioinforma. 43, 11.10.1–11.10.33 (2013). es_ES
dc.description.references Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013). es_ES
dc.description.references Duruflé, H. et al. Cell wall modifications of two Arabidopsis thaliana ecotypes, Col and Sha, in response to sub-optimal growth conditions: an integrative study. Plant Sci. 263, 183–193 (2017). es_ES
dc.description.references Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012). es_ES
dc.description.references Hao, Y. et al. Auxin response factor SlARF2 Is an essential component of the regulatory mechanism controlling fruit ripening in tomato. PLOS Genet 11, e1005649 (2015). es_ES
dc.description.references Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019). es_ES
dc.description.references Anders, S., Pyl, P. T. & Huber, W. HTSeq-A python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015). es_ES
dc.description.references Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). es_ES
dc.description.references Thimm, O. et al. MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37, 914–939 (2004). es_ES
dc.description.references Song, L., Koga, Y. & Ecker, J. R. Profiling of transcription factor binding events by chromatin immunoprecipitation sequencing (ChIP-seq). Curr. Protoc. Plant Biol. 1, 293–306 (2016). es_ES
dc.description.references Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008). es_ES
dc.description.references Ma, W., Noble, W. S. & Bailey, T. L. Motif-based analysis of large nucleotide data sets using MEME-ChIP. Nat. Protoc. 9, 1428–1450 (2014). es_ES
dc.description.references Zouine, M. et al. TomExpress, a unified tomato RNA-Seq platform for visualization of expression data, clustering and correlation networks. Plant J. 92, 727–735 (2017). es_ES
dc.description.references Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem