- -

Biophysical phenotyping of mesenchymal stem cells along the osteogenic differentiation pathway

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Biophysical phenotyping of mesenchymal stem cells along the osteogenic differentiation pathway

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gavazzo, Paola es_ES
dc.contributor.author Viti, Federica es_ES
dc.contributor.author Donnelly, Hannah es_ES
dc.contributor.author Gonzalez Oliva, Mariana Azevedo es_ES
dc.contributor.author Salmerón Sánchez, Manuel es_ES
dc.contributor.author Dalby, Matthew J. es_ES
dc.contributor.author Vassalli, Massimo es_ES
dc.date.accessioned 2022-11-08T19:01:28Z
dc.date.available 2022-11-08T19:01:28Z
dc.date.issued 2021-12 es_ES
dc.identifier.issn 0742-2091 es_ES
dc.identifier.uri http://hdl.handle.net/10251/189474
dc.description.abstract [EN] Mesenchymal stem cells represent an important resource, for bone regenerative medicine and therapeutic applications. This review focuses on new advancements and biophysical tools which exploit different physical and chemical markers of mesenchymal stem cell populations, to finely characterize phenotype changes along their osteogenic differentiation process. Special attention is paid to recently developed label-free methods, which allow monitoring cell populations with minimal invasiveness. Among them, quantitative phase imaging, suitable for single-cell morphometric analysis, and nanoindentation, functional to cellular biomechanics investigation. Moreover, the pool of ion channels expressed in cells during differentiation is discussed, with particular interest for calcium homoeostasis.Altogether, a biophysical perspective of osteogenesis is proposed, offering a valuable tool for the assessment of the cell stage, but also suggesting potential physiological links between apparently independent phenomena. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Cell Biology and Toxicology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Mesenchymal stem cells es_ES
dc.subject Osteogenic differentiation es_ES
dc.subject Biophysical tools es_ES
dc.subject Cell morphology es_ES
dc.subject Cellular biomechanics es_ES
dc.subject Calcium homoeostasis es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Biophysical phenotyping of mesenchymal stem cells along the osteogenic differentiation pathway es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10565-020-09569-7 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Gavazzo, P.; Viti, F.; Donnelly, H.; Gonzalez Oliva, MA.; Salmerón Sánchez, M.; Dalby, MJ.; Vassalli, M. (2021). Biophysical phenotyping of mesenchymal stem cells along the osteogenic differentiation pathway. Cell Biology and Toxicology. 37:915-933. https://doi.org/10.1007/s10565-020-09569-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10565-020-09569-7 es_ES
dc.description.upvformatpinicio 915 es_ES
dc.description.upvformatpfin 933 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 37 es_ES
dc.identifier.pmid 33420657 es_ES
dc.relation.pasarela S\463067 es_ES
dc.description.references Alford AI, Kozloff KM, Hankenson KD. Extracellular matrix networks in bone remodeling. Int J Biochem Cell Biol. 2015;65:20–31. es_ES
dc.description.references Anderson HJ, Sahoo JK, Ulijn RV, Dalby MJ. Mesenchymal stem cell fate: applying biomaterials for control of stem cell behavior. Front Bioeng Biotechnol. 2016;4:38. es_ES
dc.description.references Aquino-Martínez R, Artigas N, Gámez B, Rosa JL, Ventura F. Extracellular calcium promotes bone formation from bone marrow mesenchymal stem cells by amplifying the effects of BMP-2 on SMAD signalling. PLoS One. 2017;12(5):e0178158. es_ES
dc.description.references Banik BL, Riley TR, Platt CJ, Brown JL. Human mesenchymal stem cell morphology and migration on microtextured titanium. Front Bioeng Biotechnol. 2016;4:41. es_ES
dc.description.references Barradas AM, Fernandes HA, Groen N, Chai YC, Schrooten J, van de Peppel J, et al. A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Biomaterials. 2012;11:3205–15. es_ES
dc.description.references Bartolozzi A, Viti F, De Stefano S, Sbrana F, Petecchia L, Gavazzo P, et al. Development of label-free biophysical markers in osteogenic maturation. J Mech Behav Biomed Mater. 2020;103:103581. es_ES
dc.description.references Barty A, Nugent K, Paganin D, Roberts A. Quantitative optical phase microscopy. Opt Lett. 1998;23:817–9. es_ES
dc.description.references Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology and potential applications. Stem Cells. 2001;19(3):180–92. es_ES
dc.description.references Bianco P, Cao X, Frenette PS, Mao JJ, Robey PG, Simmons PJ, et al. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med. 2013;19:35–42. es_ES
dc.description.references Biggs MJP, Richards RG, Gadegaard N, Wilkinson CDW, Oreffo ROC, Dalby MJ. The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+ enriched skeletal stem cells. Biomaterials. 2009;30(28):5094–103. es_ES
dc.description.references Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15:786–801. es_ES
dc.description.references Briggs T, Treiser MD, Holmes PF, Kohn J, Moghe PV, Arinzeh TL. Osteogenic differentiation of human mesenchymal stem cells on poly(ethylene glycol)-variant biomaterials. J Biomed Mater Res A. 2009;91(4):975–84. es_ES
dc.description.references Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9:641–50. es_ES
dc.description.references Ceccarelli G, Bloise N, Mantelli M, Gastaldi G, Fassina L, De Angelis MG, et al. A comparative analysis of the in vitro effects of pulsed electromagnetic field treatment on osteogenic differentiation of two different mesenchymal cell lineages. Biores Open Access. 2013;2:283–94. es_ES
dc.description.references Childs PG, Boyle CA, Pemberton GD, Nikukar H, Curtis ASG, Henriquez FL, et al. Use of nanoscale mechanical stimulation for control and manipulation of cell behaviour. Acta Biomater. 2016;34:159–68. es_ES
dc.description.references Corey DP, Hudspeth AJ. Response latency of vertebrate hair cells. Biophys J. 1979;26:499–506. es_ES
dc.description.references Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 2010;330(6000):55–60. es_ES
dc.description.references Cox CD, Bae C, Ziegler L, Hartley S, Nikolova-Krstevski V, Rohde PR, et al. Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension. Nat Commun. 2016;7:10366. es_ES
dc.description.references Curry AS, Pensa NW, Barlow AM, Bellis SL. Taking cues from the extracellular matrix to design bone-mimetic regenerative scaffolds. Matrix Biol. 2016;(52–54):397–412. es_ES
dc.description.references Cutiongco MFA, Jensen BS, Reynolds PM, Gadegaard N. Predicting gene expression using morphological cell responses to nanotopography. Nat Commun. 2020;11:1384. es_ES
dc.description.references Dalby MJ, Biggs MJP, Gadegaard N, Kalna G, Wilkinson CDW, Curtis ASG. Nanotopographical stimulation of mechanotransduction and changes in interphase centromere positioning. J Cell Biochem. 2007a;100(2):326–38. es_ES
dc.description.references Dalby MJ, Gadegaard N, Herzyk P, Sutherland D, Agheli H, Wilkinson CDW, et al. Nanomechanotransduction and interphase nuclear organization influence on genomic control. J Cell Biochem. 2007b;102(5):1234–44. es_ES
dc.description.references Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater. 2007c;6:997–1003. es_ES
dc.description.references Dalby M, García A, Salmeron-Sanchez M. Receptor control in mesenchymal stem cell engineering. Nat Rev Mater. 2018;3:17091. es_ES
dc.description.references Dimitriou R, Mataliotakis GI, Angoules AG, Kanakaris NK, Giannoudis PV. Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury. 2011;42(2):S3–S15. es_ES
dc.description.references Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005;310(5751):1139–43. es_ES
dc.description.references Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7. es_ES
dc.description.references Domura R, Sasaki R, Ishikawa Y, Okamoto M. Cellular morphology-mediated proliferation and drug sensitivity of breast cancer cells. J Funct Biomater. 2017;8(2):pii: E18. es_ES
dc.description.references Donnelly H, Salmerón-Sánchez M, Dalby MJ. Designing stem cell niches for differentiation and self-renewal. J R Soc Interface. 2018;15(145):20180388. es_ES
dc.description.references Elefteriou F, Benson M, Sowa H, Starbuck M, Liu X, Ron D, et al. ATF4 mediation of NF1 functions in osteoblast reveals a nutritional basis for congenital skeletal dysplasiae. Cell Metab. 2006;4(6):441–51. es_ES
dc.description.references Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89. es_ES
dc.description.references Fassina L, Saino E, Visai L, Silvani G, Cusella De Angelis MG, Mazzini G, et al. Electromagnetic enhancement of a culture of human SAOS-2 osteoblasts seeded onto titanium fiber-mesh scaffolds. J Biomed Mater Res A. 2008;87(3):750–9. es_ES
dc.description.references Ferraro P, Wax A, Zalevsky Z. Coherent light microscopy, imaging and quantitative phase analysis: Springer-Verlag; 2011. es_ES
dc.description.references Fitzsimmons REB, Mazurek MS, Soos A, Simmons CA. Mesenchymal stromal/stem cells in regenerative medicine and tissue engineering. Stem Cells Int. 2018;2018:8031718. es_ES
dc.description.references Ford J. Red blood cell morphology. Int J Lab Hematol. 2013;35(3):351–7. es_ES
dc.description.references Friedenstein AJ. Precursor cells of mechanocytes. Int Rev Cytol. 1976;47:327–59. es_ES
dc.description.references Gasser JA, Kneissel M. Bone physiology and biology. In: Smith SY, Varela A, Samadfam R, editors. Bone toxicology. Cham: Springer International Publishing; 2017. p. 27–94. es_ES
dc.description.references Ge C, Xiao G, Jiang D, Franceschi RT. Critical role of the extracellular signal–regulated kinase–MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol. 2007;176(5):709–18. es_ES
dc.description.references Ge C, Cawthron WP, Li Y, Zhao G, Macdougald OA, Franceschi RT. Reciprocal control of osteogenic and adipogenic differentiation by ERK/MAP kinase phosphorylation of Runx2 and PPARγ transcription factors. J Cell Physiol. 2016;231(3):69–81. es_ES
dc.description.references Geiger B, Spatz JP, Bershadsky AD. Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol. 2009;10:21–33. es_ES
dc.description.references Ghali O, Broux O, Falgayrac G, Haren N, Van Leeuwen JPTM, Penel G, et al. Dexamethasone in osteogenic medium strongly induces adipocyte differentiation of mouse bone marrow stromal cells and increases osteoblast differentiation. BMC Cell Biol. 2015;16(1):1–15. es_ES
dc.description.references Giannoudis PV, Chris Arts JJ, Schmidmaier G, Larsson S. What should be the characteristics of the ideal bone graft substitute? Injury. 2011;42(2):S1. es_ES
dc.description.references He L, Ahmad M, Perrimon N. Mechanosensitive channels and their functions in stem cell differentiation. Exp Cell Res. 2018;374:259–65. es_ES
dc.description.references Hei H, Gao J, Dong J, Tao J, Tian L, Pan W, et al. BK knockout by TALEN-mediated gene targeting in osteoblasts: KCNMA1 determines the proliferation and differentiation of osteoblasts. Mol Cells. 2016;39(7):530–5. es_ES
dc.description.references Heubach JF, Graf EM, Leutheuser J, Bock M, Balana B, Zahanich I, et al. Electrophysiological properties of human mesenchymal stem cells. J Physiol. 2004;554:659–72. es_ES
dc.description.references Huang C-YC, Hagar KL, Frost LE, Sun Y, Cheung HS. Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells. 2004;22:313–23. es_ES
dc.description.references Huveneers S, Danen EHJ. Adhesion signaling - crosstalk between integrins. Src and Rho J Cell Sci. 2009;122:1059–69. es_ES
dc.description.references Ingber DE. Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci. 2003a;116(7):1157–73. es_ES
dc.description.references Ingber DE. Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci. 2003b;116(8):1397–408. es_ES
dc.description.references Ito T, Itakura S, Todorov I, Rawson J, Asari S, Shintaku J, et al. Mesenchymal stem cell and islet co-transplantation promotes graft revascularization and function. Transplantation. 2010;89(12):1438–45. es_ES
dc.description.references Jaalouk DE, Lammerding J. Mechanotransduction gone awry. Nat Rev Mol Cell Biol. 2009;10:63–73. es_ES
dc.description.references Kawaguchi N, Sundberg C, Kveiborg M, Moghadaszadeh B, Asmar M, Dietrich N, et al. ADAM12 induces actin cytoskeleton and extracellular matrix reorganization during early adipocyte differentiation by regulating beta1 integrin function. J Cell Sci. 2003;116(Pt 19):3893–904. es_ES
dc.description.references Kawano S, Shoji S, Ichinose S, Yamagata K, Tagami M, Hiraoka M. Characterization of Ca(2+) signaling pathways in human mesenchymal stem cells. Cell Calcium. 2002;32(4):165–74. es_ES
dc.description.references Kawano S, Otsu K, Shoji S, Yamagata K, Hiraoka M. Ca(2+) oscillations regulated by Na(+)-Ca(2+) exchanger and plasma membrane Ca(2+) pump induce fluctuations of membrane currents and potentials in human mesenchymal stem cells. Cell Calcium. 2003;34(2):145–56. es_ES
dc.description.references Kobayashi T, Sokabe M. Sensing substrate rigidity by mechanosensitive ion channels with stress fibers and focal adhesions. Curr Opin Cell Biol. 2010;22(5):669–76. es_ES
dc.description.references Kou SS, Waller L, Barbastathis G, Sheppard CJ. Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging. Opt Lett. 2010;35:447–9. es_ES
dc.description.references Kronenberg HM. Developmental regulation of the growth plate. Nature. 2003;423(6937):332–6. es_ES
dc.description.references Kuo SW, Lin HI, Hui-Chun Ho J, Shih YRV, Chen HF, Yen TJ, et al. Regulation of the fate of human mesenchymal stem cells by mechanical and stereo-topographical cues provided by silicon nanowires. Biomaterials. 2012;33:5013–22. es_ES
dc.description.references Lane S, Williams D, Watt F. Modulating the stem cell niche for tissue regeneration. Nat Biotechnol. 2014;32:795–803. es_ES
dc.description.references Langelier E, Suetterlin R, Hoemann CD, Aebi U, Buschmann MD. The chondrocyte cytoskeleton in mature articular cartilage: structure and distribution of actin, tubulin, and vimentin filaments. J Histochem Cytochem. 2000;48(10):1307–20. es_ES
dc.description.references Lavenus S, Berreur M, Trichet V, Pilet P, Louarn G, Layrolle P. Adhesion and osteogenic differentiation of human mesenchymal stem cells on titanium nanopores. Eur Cells Mater. 2011;22:84–96. es_ES
dc.description.references Lee OK, Liu Y-S. In search of the pivot point of mechanotransduction: mechanosensing of stem cells. Cell Transplant. 2014;23:1–11. es_ES
dc.description.references Lee K, Kim K, Jung J, Heo J, Cho S, Lee S, et al. Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications. Sensors. 2013;13(4):4170–91. es_ES
dc.description.references Li GR, Sun H, Deng X, Lau CP. Characterization of ionic currents in human mesenchymal stem cells from bone marrow. Stem Cells. 2005;23:371–82. es_ES
dc.description.references Li J, Hou B, Tumova S, Muraki K, Bruns A, Ludlow MJ, et al. Piezo1 integration of vascular architecture with physiological force. Nature. 2014;515(7526):279–82. es_ES
dc.description.references Li X, Han L, Nookaew I, Mannen E, Silva MJ, Almeida M, et al. Stimulation of piezo1 by mechanical signals promotes bone anabolism. Elife. 2019;8:1–22. es_ES
dc.description.references Loewke NO, Pai S, Cordeiro C, Black D, King BL, Contag CH, et al. Automated cell segmentation for quantitative phase microscopy. IEEE Trans Med Imaging. 2018;37(4):929–40. es_ES
dc.description.references Long F. Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol. 2012;13(1):27–38. es_ES
dc.description.references Long EG, Buluk M, Gallagher MB, Schneider JM, Brown JL. Human mesenchymal stem cell morphology, migration, and differentiation on micro and nano-textured titanium. Bioact Mater. 2019;4:249–55. es_ES
dc.description.references Loye AM, Kinser ER, Bensouda S, Shayan M, Davis R, Wang R, et al. Regulation of mesenchymal stem cell differentiation by nanopatterning of bulk metallic glass. Sci Rep. 2018;8:8758. es_ES
dc.description.references Maloney JM, Nikova D, Lautenschläger F, Clarke E, Langer R, Guck J, et al. Mesenchymal stem cell mechanics from the attached to the suspended state. Biophys J. 2010;99:2479–87. es_ES
dc.description.references Mao AS, Shin JW, Mooney DJ. Effects of substrate stiffness and cell-cell contact on mesenchymal stem cell differentiation. Biomaterials. 2016;98:184–91. es_ES
dc.description.references Marie PJ. Transcription factors controlling osteoblastogenesis. Arch Biochem Biophys. 2008;473(2):98–105. es_ES
dc.description.references Martino F, Perestrelo AR, Vinarský V, Pagliari S, Forte G. Cellular mechanotransduction: from tension to function. Front Physiol. 2018;9:824. es_ES
dc.description.references Matsuoka F, Takeuchi I, Agata H, Kagami H, Shiono H, Kiyota Y, et al. Morphology-based prediction of osteogenic differentiation potential of human mesenchymal stem cells. PLoS One. 2013;8(2):e55082. es_ES
dc.description.references McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004;6(4):483–95. es_ES
dc.description.references McNamara LE, McMurray RJ, Biggs MJP, Kantawong F, Oreffo ROC, Dalby MJ, et al. Nanotopographical control of stem cell differentiation. J Tissue Eng. 2010;1:120623. https://doi.org/10.4061/2010/120623. es_ES
dc.description.references McNamara LE, Burchmore R, Riehle MO, Herzyk P, Biggs MJP, Wilkinson CDW, et al. The role of microtopography in cellular mechanotransduction. Biomaterials. 2012;33(10):2835–47. es_ES
dc.description.references McQuin C, Goodman A, Chernyshev V, Kamentsky L, Cimini BA, Karhohs KW, et al. CellProfiler 3.0: Next-generation image processing for biology. PLoS Biol. 2018;16(7):e2005970. es_ES
dc.description.references Mehler VJ, Burns CJ, Moore ML. Concise review: exploring immunomodulatory features of mesenchymal stromal cells in humanized mouse models. Stem Cells. 2018;37(3):298–305. es_ES
dc.description.references Merola F, Miccio L, Memmolo P, Di Caprio G, Galli A, Puglisi R, et al. Digital holography as a method for 3D imaging and estimating the biovolume of motile cells. Lab Chip. 2013;13(23):4512–6. es_ES
dc.description.references Mobasseri R, Tian L, Soleimani M, Ramakrishna S, Naderi-Manesh H. Bio-active molecules modified surfaces enhanced mesenchymal stem cell adhesion and proliferation. Biochem Biophys Res Commun. 2017;483:312–7. es_ES
dc.description.references Mohammed D, Versaevel M, Bruyère C, Alaimo L, Luciano M, Vercruysse E, et al. Innovative tools for mechanobiology: unraveling outside-in and inside-out mechanotransduction. Front Bioeng Biotechnol. 2019;1:162. es_ES
dc.description.references Mousawi F, Peng H, Li J, Ponnambalam S, Roger S, Zhao H, et al. Chemical activation of the Piezo1 channel drives mesenchymal stem cell migration via inducing ATP release and activation of P2 receptor purinergic signaling. Stem Cells. 2020;38:410–21. es_ES
dc.description.references Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002;108:17–29. es_ES
dc.description.references Nečas D, Klapetek P. Gwyddion: an open-source software for SPM data analysis. Cent Eur J Phys. 2012;10:181–8. es_ES
dc.description.references Paino F, La Noce M, Giuliani A, De Rosa A, Mazzoni S, Laino L, et al. Human DPSCs fabricate vascularized woven bone tissue: a new tool in bone tissue engineering. Clin Sci (Lond). 2017;131(8):699–713. es_ES
dc.description.references Paluch EK, Nelson CM, Biais N, Fabry B, Moeller J, Pruitt BL, et al. Mechanotransduction: use the force(s). BMC Biol. 2015;13:47. es_ES
dc.description.references Panaroni C, Tzeng Y-S, Saeed H, Wu JY. Mesenchymal progenitors and the osteoblast lineage in bone marrow hematopoietic niches. Curr Osteoporos Rep. 2014;12:22–32. es_ES
dc.description.references Park YK, Popescu G, Ferraro P, Kemper B. Quantitative phase imaging and its applications to biophysics, biology, and medicine. Front Phys. 2020;7:226. es_ES
dc.description.references Parpaite T, Coste B. Piezo channels. Curr Biol. 2017;27:243–58. es_ES
dc.description.references Pathak MM, Nourse JL, Tran T, Hwe J, Arulmoli J, Le DTT, et al. Stretch-activated ion channel Piezo1 directs lineage choice in human neural stem cells. PNAS USA. 2014;111:16148–53. es_ES
dc.description.references Paturzo M, Pagliarulo V, Bianco V, Memmolo P, Miccio L, Merola F, et al. Digital holography, a metrological tool for quantitative analysis: trends and future applications. Opt Lasers Eng. 2018;104:32–47. es_ES
dc.description.references Pchelintsev E, Djamgoz MBA. Mesenchymal stem cell differentiation: control by calcium-activated potassium channels. J Cell Physiol. 2018;233:3755–68. es_ES
dc.description.references Petecchia L, Sbrana F, Utzeri R, Vercellino M, Usai C, Visai L, et al. Electro-magnetic field promotes osteogenic differentiation of BM-hMSCs through a selective action on Ca2+-related mechanisms. Sci Rep. 2015;5:13856. es_ES
dc.description.references Petecchia L, Usai C, Vassalli M, Gavazzo P. Biophysical characterization of nanostructured TiO2 as a good substrate for hBM-MSC adhesion, growth and differentiation. Exp Cell Res. 2017;S0014:4827. es_ES
dc.description.references Pileggi A, Xu X, Tan J, Ricordi C. Mesenchymal stromal (stem) cells to improve solid organ transplant outcome: lessons from the initial clinical trials. Curr Opin Organ Transplant. 2013;18(6):672–81. es_ES
dc.description.references Pinho S, Frenette S. Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol. 2019;20(5):303–20. es_ES
dc.description.references Popescu G, Park Y. Quantitative phase imaging in biomedicine. J Biomed Opt. 2015;20(11):111201. es_ES
dc.description.references Ranade SS, Syeda R, Patapoutian A. Mechanically activated ion channels. Neuron. 2015;87(6):1162–79. es_ES
dc.description.references Rangamani P, Lipshtat A, Azeloglu EU, Calizo RC, Hu M, Ghassemi S, et al. Decoding information in cell shape. Cell. 2013;154(6):1356–69. es_ES
dc.description.references Rezakhaniha R, Agianniotis A, Schrauwen JTC, Griffa A, Sage D, Bouten CVC, et al. Experimental investigation of collagen waviness and orientation in the arterial adventitia. Biomech Model Mechanobiol. 2012;11:461–73. es_ES
dc.description.references Ridone P, Vassalli M, Martinac B. Piezo1 mechanosensitive channels: what are they and why are they important. Biophys Rev. 2019;11:795–805. es_ES
dc.description.references Ridone P, Pandzic E, Vassalli M, Cox C, Macmillan A, Gottlieb P, et al. Disruption of membrane cholesterol organization impairs the activity of PIEZO1 channel clusters. J Gen Physiol. 2020;152. https://doi.org/10.1085/jgp.201912515. es_ES
dc.description.references Rodriguez JP, Gonzalez M, Rios S, Cambiazo V. Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation. J Cell Biochem. 2004;93(4):721–31. es_ES
dc.description.references Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics. 2017;18:529. es_ES
dc.description.references Sbrana F, Landini E, Gjeci N, Viti F, Ottaviani E, Vassalli M. OvMeter: an automated 3D-integrated opto-electronic system for Ostreopsis cf. ovata bloom monitoring. J Appl Phycol. 2017;29(3):1363–75. es_ES
dc.description.references Schakenraad K, Ernst J, Pomp W, Danen EHJ, Merks RMH, Schmidt T, Giomi L. Mechanical interplay between cell shape and actin cytoskeleton organization. 2019. arXiv:1905.09805 [physics.bio-ph]. es_ES
dc.description.references Schiller HB, Fässler R. Mechanosensitivity and compositional dynamics of cell-matrix adhesions. EMBO Rep. 2013;14(6):509–19. es_ES
dc.description.references Schwartz Z, Simon BJ, Duran MA, Barabino G, Chaudhri R, Boyan BD. Pulsed electromagnetic fields enhance BMP-2 dependent osteoblastic differentiation of human mesenchymal stem cells. J Orthop Res. 2008;26(9):1250–5. es_ES
dc.description.references Shih YR, Hwang Y, Phadke A, Kang H, Hwang NS, Caro EJ, et al. Calcium phosphate bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling. PNAS USA. 2014;111(3):990–5. es_ES
dc.description.references Shyy JYJ, Chien S. Role of integrins in endothelial mechanosensing of shear stress. Circ Res. 2002;91:769–75. es_ES
dc.description.references Silver IA, Murrills RJ, Etherington DJ. Microelectrode studies on the acid microenvironments behind the environments beneath adherent macrophage and osteoclast. Exp Cell Res. 1988;175(2):266–72. es_ES
dc.description.references Sonowal H, Kumar A, Bhattacharyya J, Gogoi PK, Jaganathanet BG. Inhibition of actin polymerization decreases osteogeneic differentiation of mesenchymal stem cells through p38 MAPK pathway. J Biomed Sci. 2013;20:71. es_ES
dc.description.references Su H, Yin Z, Huh S, Kanade T. Cell segmentation in phase contrast microscopy images via semi-supervised classification over optics-related features. Med Image Anal. 2013;17:746–65. es_ES
dc.description.references Suchyna TM, Johnson JH, Hamer K, Leykam JF, Gage DA, Clemo HF, et al. Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J Gen Physiol. 2000;115:583–98. es_ES
dc.description.references Sugimoto A, Miyazaki A, Kawarabayashi K, Shono M, Akazawa Y, Hasegawa T, et al. Piezo type mechanosensitive ion channel component 1 functions as a regulator of the cell fate determination of mesenchymal stem cells. Sci Rep. 2017;7:1–14. es_ES
dc.description.references Sun S, Liu Y, Lipsky S, Cho M. Physical manipulation of calcium oscillations facilitates osteodifferentiation of human mesenchymal stem cells. FASEB J. 2007;21(7):1472–80. es_ES
dc.description.references Sun W, Chi S, Li Y, Ling S, Tan Y, Xu Y, et al. The mechanosensitive Piezo1 channel is required for bone formation. Elife. 2019;8:e47454. es_ES
dc.description.references Szpalski C, Wetterau M, Barr J, Warren SM. Bone tissue engineering: current strategies and techniques part I: scaffolds. Tissue Eng Part B Rev. 2012;18(4):246–57. es_ES
dc.description.references Tan YZ, Fei DD, He XN, Dai JM, Xu RC, Xu XY, et al. L-type voltage-gated calcium channels in stem cells and tissue engineering. Cell Prolif. 2019;52(4):e12623. es_ES
dc.description.references Tanikake Y, Akahane M, Furukawa A, Tohma Y, Inagaki Y, Kira T, et al. Calcium concentration in culture medium as a nondestructive and rapid marker of osteogenesis. Cell Transplant. 2017;26:1067–76. es_ES
dc.description.references Tao R, Sun HY, Lau CP, Tse HF, Lee HC, Li GR. Cyclic ADP ribose is a novel regulator of intracellular Ca2+ oscillations in human bone marrow mesenchymal stem cells. J Cell Mol Med. 2011;15:2684–96. es_ES
dc.description.references Theveneau E, Mayor R. Cadherins in collective cell migration of mesenchymal cells. Curr Opin Cell Biol. 2012;24:677–84. es_ES
dc.description.references Titushkin I, Cho M. Modulation of cellular mechanics during osteogenic differentiation of human mesenchymal stem cells. Biophys J. 2007;93:3693–702. es_ES
dc.description.references Treiser MD, Yang EH, Gordonov S, Cohen DM, Androulakis IP, Kohn J, et al. Cytoskeleton-based forecasting of stem cell lineage fates. PNAS USA. 2010;107(2):610–5. es_ES
dc.description.references Tsimbouri PM, Murawski K, Hamilton G, Herzyk P, Oreffo ROC, Gadegaard N, et al. A genomics approach in determining nanotopographical effects on MSC phenotype. Biomaterials. 2013;34(9):2177–84. es_ES
dc.description.references Tsimbouri P, Gadegaard N, Burgess K, White K, Reynolds P, Herzyk P, et al. Nanotopographical effects on mesenchymal stem cell morphology and phenotype. J Cell Biochem. 2014;115:380–90. es_ES
dc.description.references Tsimbouri PM, Childs PG, Pemberton GD, Yang J, Jayawara V, Oripiriyakul W, et al. Stimulation of 3D osteogenesis by mesenchymal stem cells using a nanovibrational bioreactor. Nat Biomed Eng. 2017;1:758–70. es_ES
dc.description.references Varga Z, Juhász T, Matta C, Fodor J, Katona É, Bartok A, et al. Switch of voltage-gated K+ channel expression in the plasma membrane of chondrogenic cells affects cytosolic Ca2+−oscillations and cartilage formation. PLoS One. 2011;6(11):e27957. es_ES
dc.description.references Vining KH, Mooney DJ. Mechanical forces direct stem cell behaviour in development and regeneration. Nat Rev Mol Cell Biol. 2017;18:728–42. es_ES
dc.description.references Viti F, Landini M, Mezzelani A, Petecchia L, Milanesi L, Scaglione S. Osteogenic differentiation of MSC through calcium signaling activation: transcriptomics and functional analysis. PLoS One. 2016;11(2):e0148173. es_ES
dc.description.references Walleczek J. Electromagnetic field effects on cells of the immune system: the role of calcium signaling. FASEB J. 1992;6:3177–85. es_ES
dc.description.references Wang N, Tytell JD, Ingber DE. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol. 2009;10(1):75–82. es_ES
dc.description.references Wang C, Li Y, Yang M, Zou Y, Liu H, Liang Z, et al. Efficient differentiation of bone marrow mesenchymal stem cells into endothelial cells in vitro. Eur J Vasc Endovasc Surg. 2018;55(2):257–65. es_ES
dc.description.references World Health Organization. World report on ageing and health. World Health Organization; 2015. https://apps.who.int/iris/handle/10665/186463 es_ES
dc.description.references Wu PH, Phillip JM, Khatau SB, Chen WC, Stirman J, Rosseel S, et al. Evolution of cellular morpho-phenotypes in cancer metastasis. Sci Rep. 2015;5:18437. es_ES
dc.description.references Yang J, McNamara LE, Gadegaard N, Alakpa EV, Burgess KV, Meek RMD, et al. Nanotopographical induction of osteogenesis through adhesion, bone morphogenic protein cosignaling, and regulation of MicroRNAs. ACS Nano. 2014a;8(10):9941–53. es_ES
dc.description.references Yang L, Tsang KY, Tang HC, Chan D, Cheah KSE. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. PNAS USA. 2014b;111(33):12097–102. es_ES
dc.description.references Yourek G, Hussain MA, Mao JJ. Cytoskeletal changes of mesenchymal stem cells during differentiation. ASAIO J. 2007;53(2):219–28. es_ES
dc.description.references Yu VWC, Ambartsoumian G, Verlinden L, Moir JM, Prud’homme J, Gauthier C, et al. FIAT represses ATF4-mediated transcription to regulate bone mass in transgenic mice. J Cell Biol. 2005;169(4):591–601. es_ES
dc.description.references Zahanich I, Graf EM, Heubach JF, Hempel U, Boxberger S, Ravens U. Molecular and functional expression of voltage-operated calcium channels during osteogenic differentiation of human mesenchymal stem cells. J Bone Miner Res. 2005;20(9):1637–46. es_ES
dc.description.references Zhang YY, Yue J, Che H, Sun HY, Tse HF, Li GR. BKCa and hEag1 channels regulate cell proliferation and differentiation in human bone marrow-derived mesenchymal stem cells. J Cell Physiol. 2014;229(2):202–12. es_ES
dc.description.references Zhang S, Zhao C, Liu S, Wang Y, Zhao Y, Guan W, et al. Characteristics and multi-lineage differentiation of bone marrow mesenchymal stem cells derived from the Tibetan mastiff. Mol Med Rep. 2018;18(2):2097–109. es_ES
dc.description.references Zuo C, Chen Q, Asundi A. Comparison of digital holography and transport of intensity for quantitative phase contrast imaging. In: Osten W, editor. Fringe 2013. Berlin, Heidelberg: Springer; 2014. p. 137–42. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem