- -

Multi-scale graph-based grading for Alzheimer's disease prediction

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multi-scale graph-based grading for Alzheimer's disease prediction

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hett, Kilian es_ES
dc.contributor.author Ta, Vinh-Thong es_ES
dc.contributor.author Oguz, Ipek es_ES
dc.contributor.author Manjón Herrera, José Vicente es_ES
dc.contributor.author Coupé, Pierrick es_ES
dc.contributor.author Alzheimers Disease Neuroimaging Initiative es_ES
dc.date.accessioned 2022-11-09T19:01:50Z
dc.date.available 2022-11-09T19:01:50Z
dc.date.issued 2021-01 es_ES
dc.identifier.issn 1361-8415 es_ES
dc.identifier.uri http://hdl.handle.net/10251/189540
dc.description.abstract [EN] The prediction of subjects with mild cognitive impairment (MCI) who will progress to Alzheimer¿s disease (AD) is clinically relevant, and may above all have a significant impact on accelerating the development of new treatments. In this paper, we present a new MRI-based biomarker that enables us to accurately predict conversion of MCI subjects to AD. In order to better capture the AD signature, we introduce two main contributions. First, we present a new graph-based grading framework to combine inter-subject similarity features and intra-subject variability features. This framework involves patch-based grading of anatomical structures and graph-based modeling of structure alteration relationships. Second, we propose an innovative multiscale brain analysis to capture alterations caused by AD at different anatomical levels. Based on a cascade of classifiers, this multiscale approach enables the analysis of alterations of whole brain structures and hippocampus subfields at the same time. During our experiments using the ADNI-1 dataset, the proposed multiscale graph-based grading method obtained an area under the curve (AUC) of 81% to predict conversion of MCI subjects to AD within three years. Moreover, when combined with cognitive scores, the proposed method obtained 85% of AUC. These results are competitive in comparison to state-of-the-art methods evaluated on the same dataset. es_ES
dc.description.sponsorship This work benefited from the support of the project DeepvolBrain of the French National Research Agency (ANR-18-CE450013). This study was achieved within the context of the Laboratory of Excellence TRAIL ANR-10-LABX-57 for the BigDataBrain project. Moreover, we thank the Investments for the future Program IdEx Bordeaux (ANR-10-IDEX-03-02, HL-MRI Project), Cluster of excellence CPU and the CNRS. Finally, this work was also supported by the NIH grants R01-NS094456 and U01-NS106845. Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01-AG024904) and by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer's Biogen; Bristol-Myes Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffman-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Pharmaceutical Research & Development LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org).The grantee organization is the Northern California Institute of Research and Education, and the study is coordinated by the Alzheimer's Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Medical Image Analysis es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Patch-based grading es_ES
dc.subject Graph-based method es_ES
dc.subject Whole brain analysis es_ES
dc.subject Hippocampal subfields es_ES
dc.subject Intra-subject variability es_ES
dc.subject Inter-subject similarity es_ES
dc.subject Alzheimer's disease classification es_ES
dc.subject Mild cognitive impairment es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Multi-scale graph-based grading for Alzheimer's disease prediction es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.media.2020.101850 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-10-LABX-57/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-18-CE45-0013/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-10-IDEX-03-02/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//U01 AG024904/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//R01-NS094456/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//U01-NS106845/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Hett, K.; Ta, V.; Oguz, I.; Manjón Herrera, JV.; Coupé, P.; Alzheimers Disease Neuroimaging Initiative (2021). Multi-scale graph-based grading for Alzheimer's disease prediction. Medical Image Analysis. 67:1-13. https://doi.org/10.1016/j.media.2020.101850 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.media.2020.101850 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 67 es_ES
dc.identifier.pmid 33075641 es_ES
dc.identifier.pmcid PMC7725970 es_ES
dc.relation.pasarela S\462323 es_ES
dc.contributor.funder National Institute on Aging, EEUU es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder Centre National de la Recherche Scientifique, Francia es_ES
dc.contributor.funder National Institute of Biomedical Imaging and Bioengineering, EEUU es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem