- -

Efficient training of energy-based models via spin-glass control

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Efficient training of energy-based models via spin-glass control

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pozas-Kerstjens, Alejandro es_ES
dc.contributor.author Muñoz-Gil, Gorka es_ES
dc.contributor.author Piñol, Eloy es_ES
dc.contributor.author Garcia March, Miguel Angel es_ES
dc.contributor.author Acín, Antonio es_ES
dc.contributor.author Lewenstein, Maciej es_ES
dc.contributor.author Grzybowski, Przemyslaw R. es_ES
dc.date.accessioned 2022-11-10T19:02:17Z
dc.date.available 2022-11-10T19:02:17Z
dc.date.issued 2021-06 es_ES
dc.identifier.uri http://hdl.handle.net/10251/189587
dc.description.abstract [EN] We introduce a new family of energy-based probabilistic graphical models for efficient unsupervised learning. Its definition is motivated by the control of the spin-glass properties of the Ising model described by the weights of Boltzmann machines. We use it to learn the Bars and Stripes dataset of various sizes and the MNIST dataset, and show how they quickly achieve the performance offered by standard methods for unsupervised learning. Our results indicate that the standard initialization of Boltzmann machines with random weights equivalent to spin-glass models is an unnecessary bottleneck in the process of training. Furthermore, this new family allows for very easy access to low-energy configurations, which points to new, efficient training algorithms. The simplest variant of such algorithms approximates the negative phase of the log-likelihood gradient with no Markov chain Monte Carlo sampling costs at all, and with an accuracy sufficient to achieve good learning and generalization. es_ES
dc.description.sponsorship ML and AA groups acknowledge the Spanish Ministry MINECO and State Research Agency AEI (FIDEUA PID2019-106901GBI00/10.13039/501100011033, Severo Ochoa Grant Nos. SEV-2015-0522 and CEX2019-000910-S, FPI), the European Social Fund, Fundacio Cellex, Fundacio Mir-Puig, Generalitat de Catalunya (AGAUR Grant Nos. 2017 SGR 1341 and SGR 1381, CERCA program, QuantumCAT U16-011424, co-funded by ERDF Operational Program of Catalonia 2014-2020), ERC AdG NOQIA and CERQUTE, EU FEDER, MINECO-EU QUANTERA MAQS (funded by the State Research Agency AEI PCI2019-111828-2/10.13039/501100011033), the National Science Centre, Poland-Symfonia Grant No. 2016/20/W/ST4/00314 and the AXA Chair in Quantum Information Science. A P-K acknowledges funding from Fundacio Obra Socialla Caixa' (LCF/BQ/ES15/10360001) and the European Union's Horizon 2020 research and innovation programme-Grant Agreement No. 648913. G M-G acknowledges funding from Fundacio Obra Social 'la Caixa' (LCF-ICFO grant). M A G-M acknowledges funding from the Spanish Ministry of Education and Vocational Training (MEFP) through the Beatriz Galindo program 2018 (BEAGAL18/00203). es_ES
dc.language Inglés es_ES
dc.publisher IOP Publishing es_ES
dc.relation.ispartof Machine Learning: Science and Technology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Unsupervised learning es_ES
dc.subject Boltzmann machines es_ES
dc.subject Spin glass es_ES
dc.subject Statistical physics es_ES
dc.subject Physics-inspired machine learning es_ES
dc.title Efficient training of energy-based models via spin-glass control es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/2632-2153/abe807 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PCI2019-111828-2/ES/SIMULADOR CUANTICO DE ATOMO MAGNETICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/648913/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GC//2017 SGR 1341/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GC//SGR 1381/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//QuantumCAT _U16-011424/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NCN//2016%2F20%2FW%2FST4%2F00314//Symfonia/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//LCF%2FBQ%2FES15%2F10360001/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Pozas-Kerstjens, A.; Muñoz-Gil, G.; Piñol, E.; Garcia March, MA.; Acín, A.; Lewenstein, M.; Grzybowski, PR. (2021). Efficient training of energy-based models via spin-glass control. Machine Learning: Science and Technology. 2(2). https://doi.org/10.1088/2632-2153/abe807 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1088/2632-2153/abe807 es_ES
dc.description.upvformatpinicio 025026 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2632-2153 es_ES
dc.relation.pasarela S\465781 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Generalitat de Catalunya es_ES
dc.contributor.funder National Science Centre, Polonia es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder MINISTERIO DE CIENCIA INNOVACION Y UNIVERSIDADES es_ES
dc.contributor.funder Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem