Mostrar el registro completo del ítem
Garibo I Orts, Ó.; Baeza-Bosca, A.; Garcia March, MA.; Conejero, JA. (2021). Efficient recurrent neural network methods for anomalously diffusing single particle short and noisy trajectories. Journal of Physics A Mathematical and Theoretical. 54(50):1-20. https://doi.org/10.1088/1751-8121/AC3707
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/189601
Título: | Efficient recurrent neural network methods for anomalously diffusing single particle short and noisy trajectories | |
Autor: | Baeza-Bosca, Alba | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] Anomalous diffusion occurs at very different scales in nature, from atomic systems to motions in cell organelles, biological tissues or ecology, and also in artificial materials, such as cement. Being able to accurately ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reserva de todos los derechos | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.1088/1751-8121/AC3707 | |
Código del Proyecto: |
|
|
Agradecimientos: |
JAC acknowledges support from ALBATROSS project (National Plan for Scientific and Technical Research and Innovation 2017-2020, No. PID2019-104978RB-I00). MAGM acknowledges funding from the Spanish Ministry of Education and ...[+]
|
|
Tipo: |
|