- -

The chloroplast-associated protein degradation pathway controls chromoplast development and fruit ripening in tomato

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The chloroplast-associated protein degradation pathway controls chromoplast development and fruit ripening in tomato

Mostrar el registro completo del ítem

Ling, Q.; Sadali, NM.; Soufi, Z.; Zhou, Y.; Huang, B.; Zeng, Y.; Rodriguez-Concepcion, M.... (2021). The chloroplast-associated protein degradation pathway controls chromoplast development and fruit ripening in tomato. Nature Plants. 7(5):1-20. https://doi.org/10.1038/s41477-021-00916-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/189607

Ficheros en el ítem

Metadatos del ítem

Título: The chloroplast-associated protein degradation pathway controls chromoplast development and fruit ripening in tomato
Autor: Ling, Qihua Sadali, Najiah Mohd. Soufi, Ziad Zhou, Yuan Huang, Binquan Zeng, Yunliu Rodriguez-Concepcion, Manuel Jarvis, R. Paul
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] The maturation of green fleshy fruit to become colourful and flavoursome is an important strategy for plant reproduction and dispersal. In tomato (Solanum lycopersicum) and many other species, fruit ripening is ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Nature Plants. (issn: 2055-026X )
DOI: 10.1038/s41477-021-00916-y
Versión del editor: https://doi.org/10.1038/s41477-021-00916-y
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-84041-P/ES/NUEVAS HERRAMIENTAS BIOTECNOLOGICAS PARA MEJORAR LA PRODUCCION Y EL ALMACENAJE DE VITAMINAS A Y E EN CELULAS VEGETALES/
...[+]
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-84041-P/ES/NUEVAS HERRAMIENTAS BIOTECNOLOGICAS PARA MEJORAR LA PRODUCCION Y EL ALMACENAJE DE VITAMINAS A Y E EN CELULAS VEGETALES/
info:eu-repo/grantAgreement/AEI//BIO2017-90877-REDT/
info:eu-repo/grantAgreement/AEI//BIO2017-84041-P//NUEVAS HERRAMIENTAS BIOTECNOLOGICAS PARA MEJORAR LA PRODUCCION Y EL ALMACENAJE DE VITAMINAS A Y E EN CELULAS VEGETALES/
info:eu-repo/grantAgreement/BBSRC//BB%2FR016984%2F1/
info:eu-repo/grantAgreement/BBSRC//BB%2FN006372%2F1/
info:eu-repo/grantAgreement/BBSRC//BB%2FH008039%2F1/
info:eu-repo/grantAgreement/BBSRC//BB%2FR005591%2F1/
info:eu-repo/grantAgreement/BBSRC//BB%2FR009333%2F1/
info:eu-repo/grantAgreement/BBSRC//BB%2FK018442%2F1/
info:eu-repo/grantAgreement/CAS//XDB27020107/
[-]
Agradecimientos:
We thank E. Johnson and R. Dhaliwal for transmission electron microscopy conducted in the Sir William Dunn School of Pathology EM Facility, D. Hauton and J. McCullagh for IC¿MS conducted in the Mass Spectrometry Research ...[+]
Tipo: Artículo

References

Alexander, L. & Grierson, D. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J. Exp. Bot. 53, 2039–2055 (2002).

Klee, H. J. & Giovannoni, J. J. Genetics and control of tomato fruit ripening and quality attributes. Annu. Rev. Genet. 45, 41–59 (2011).

Seymour, G. B., Ostergaard, L., Chapman, N. H., Knapp, S. & Martin, C. Fruit development and ripening. Annu. Rev. Plant Biol. 64, 219–241 (2013). [+]
Alexander, L. & Grierson, D. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J. Exp. Bot. 53, 2039–2055 (2002).

Klee, H. J. & Giovannoni, J. J. Genetics and control of tomato fruit ripening and quality attributes. Annu. Rev. Genet. 45, 41–59 (2011).

Seymour, G. B., Ostergaard, L., Chapman, N. H., Knapp, S. & Martin, C. Fruit development and ripening. Annu. Rev. Plant Biol. 64, 219–241 (2013).

Llorente, B., D’Andrea, L. & Rodriguez-Concepcion, M. Evolutionary recycling of light signaling components in fleshy fruits: new insights on the role of pigments to monitor ripening. Front. Plant Sci. 7, 263 (2016).

Jarvis, P. & López-Juez, E. Biogenesis and homeostasis of chloroplasts and other plastids. Nat. Rev. Mol. Cell Biol. 14, 787–802 (2013).

Sadali, N. M., Sowden, R. G., Ling, Q. & Jarvis, R. P. Differentiation of chromoplasts and other plastids in plants. Plant Cell Rep. 38, 803–818 (2019).

Barsan, C. et al. Characteristics of the tomato chromoplast revealed by proteomic analysis. J. Exp. Bot. 61, 2413–2431 (2010).

Egea, I. et al. Chromoplast differentiation: current status and perspectives. Plant Cell Physiol. 51, 1601–1611 (2010).

Li, L. & Yuan, H. Chromoplast biogenesis and carotenoid accumulation. Arch. Biochem. Biophys. 539, 102–109 (2013).

Pesaresi, P., Mizzotti, C., Colombo, M. & Masiero, S. Genetic regulation and structural changes during tomato fruit development and ripening. Front. Plant Sci. 5, 124 (2014).

Barsan, C. et al. Proteomic analysis of chloroplast-to-chromoplast transition in tomato reveals metabolic shifts coupled with disrupted thylakoid biogenesis machinery and elevated energy-production components. Plant Physiol. 160, 708–725 (2012).

Suzuki, M. et al. Plastid proteomic analysis in tomato fruit development. PLoS ONE 10, e0137266 (2015).

Szymanski, J. et al. Label-free deep shotgun proteomics reveals protein dynamics during tomato fruit tissues development. Plant J. 90, 396–417 (2017).

Dalal, M., Chinnusamy, V. & Bansal, K. C. Isolation and functional characterization of lycopene beta-cyclase (CYC-B) promoter from Solanum habrochaites. BMC Plant Biol. 10, 61 (2010).

Llorente, B. et al. Synthetic conversion of leaf chloroplasts into carotenoid-rich plastids reveals mechanistic basis of natural chromoplast development. Proc. Natl Acad. Sci. USA 117, 21796–21803 (2020).

Pech, J. C., Bouzayen, M. & Latché, A. in Fruit Ripening: Physiology, Signaling and Genomics (eds Nath, P. & Bouzayen, M.) 28–47 (CAB International, 2014).

D’Andrea, L. et al. Interference with Clp protease impairs carotenoid accumulation during tomato fruit ripening. J. Exp. Bot. 69, 1557–1568 (2018).

D’Andrea, L. & Rodriguez-Concepcion, M. Manipulation of plastidial protein quality control components as a new strategy to improve carotenoid contents in tomato fruit. Front. Plant Sci. 10, 1071 (2019).

Ling, Q., Huang, W., Baldwin, A. & Jarvis, P. Chloroplast biogenesis is regulated by direct action of the ubiquitin–proteasome system. Science 338, 655–659 (2012).

Pan, R., Satkovich, J. & Hu, J. E3 ubiquitin ligase SP1 regulates peroxisome biogenesis in Arabidopsis. Proc. Natl. Acad. Sci. USA 113, E7307–E7316 (2016).

Ling, Q., Li, N. & Jarvis, P. Chloroplast ubiquitin E3 ligase SP1: does it really function in peroxisomes? Plant Physiol. 175, 586–588 (2017).

Ling, Q. et al. Ubiquitin-dependent chloroplast-associated protein degradation in plants. Science 363, eaav4467 (2019).

Jarvis, P. Targeting of nucleus-encoded proteins to chloroplasts in plants (Tansley Review). New Phytol. 179, 257–285 (2008).

Schnell, D. J. The TOC GTPase receptors: regulators of the fidelity, specificity and substrate profiles of the general protein import machinery of chloroplasts. Protein J. 38, 343–350 (2019).

Demarsy, E., Lakshmanan, A. M. & Kessler, F. Border control: selectivity of chloroplast protein import and regulation at the TOC-complex. Front. Plant Sci. 5, 483 (2014).

Li, H. M. & Chiu, C. C. Protein transport into chloroplasts. Annu. Rev. Plant Biol. 61, 157–180 (2010).

Shi, L. X. & Theg, S. M. The chloroplast protein import system: from algae to trees. Biochim. Biophys. Acta 1833, 314–331 (2013).

Yan, J., Campbell, J. H., Glick, B. R., Smith, M. D. & Liang, Y. Molecular characterization and expression analysis of chloroplast protein import components in tomato (Solanum lycopersicum). PLoS ONE 9, e95088 (2014).

Lim, P. O., Kim, H. J. & Nam, H. G. Leaf senescence. Annu. Rev. Plant Biol. 58, 115–136 (2007).

Hou, X., Zhang, W., Du, T., Kang, S. & Davies, W. J. Responses of water accumulation and solute metabolism in tomato fruit to water scarcity and implications for main fruit quality variables. J. Exp. Bot. 71, 1249–1264 (2020).

Gray, J. E., Picton, S., Giovannoni, J. J. & Grierson, D. The use of transgenic and naturally occurring mutants to understand and manipulate tomato fruit ripening. Plant Cell Environ. 17, 557–571 (1994).

López Camelo, A. F. & Gómez, P. A. Comparison of color indexes for tomato ripening. Hortic. Bras. 22, 534–537 (2004).

Batu, A. Determination of acceptable firmness and colour values of tomatoes. J. Food Eng. 61, 471–475 (2004).

Zeng, Y. et al. A comprehensive analysis of chromoplast differentiation reveals complex protein changes associated with plastoglobule biogenesis and remodeling of protein systems in sweet orange flesh. Plant Physiol. 168, 1648–1665 (2015).

Martel, C., Vrebalov, J., Tafelmeyer, P. & Giovannoni, J. J. The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner. Plant Physiol. 157, 1568–1579 (2011).

Pan, Y. et al. Network inference analysis identifies an APRR2-like gene linked to pigment accumulation in tomato and pepper fruits. Plant Physiol. 161, 1476–1485 (2013).

Rigano, M. M., Lionetti, V., Raiola, A., Bellincampi, D. & Barone, A. Pectic enzymes as potential enhancers of ascorbic acid production through the D-galacturonate pathway in Solanaceae. Plant Sci. 266, 55–63 (2018).

Chan, K. X., Phua, S. Y., Crisp, P., McQuinn, R. & Pogson, B. J. Learning the languages of the chloroplast: retrograde signaling and beyond. Annu. Rev. Plant Biol. 67, 25–53 (2016).

Zhao, X., Huang, J. & Chory, J. Unraveling the linkage between retrograde signaling and RNA metabolism in plants. Trends Plant Sci. 25, 141–147 (2020).

Wu, G. Z. & Bock, R. GUN control in retrograde signaling: How GENOMES UNCOUPLED proteins adjust nuclear gene expression to plastid biogenesis. Plant Cell 33, 457–474 (2021).

Chen, Y. et al. Formation and change of chloroplast-located plant metabolites in response to light conditions. Int. J. Mol. Sci. 19, 654 (2018).

Carrari, F. et al. Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. Plant Physiol. 142, 1380–1396 (2006).

Ling, Q. & Jarvis, P. Regulation of chloroplast protein import by the ubiquitin E3 ligase SP1 is important for stress tolerance in plants. Curr. Biol. 25, 2527–2534 (2015).

Woo, H. R., Kim, H. J., Lim, P. O. & Nam, H. G. Leaf senescence: systems and dynamics aspects. Annu. Rev. Plant Biol. 70, 347–376 (2019).

Wang, R., Angenent, G. C., Seymour, G. & de Maagd, R. A. Revisiting the role of master regulators in tomato ripening. Trends Plant Sci. 25, 291–301 (2020).

Gao, W., Liu, W., Zhao, M. & Li, W. X. NERF encodes a RING E3 ligase important for drought resistance and enhances the expression of its antisense gene NFYA5 in Arabidopsis. Nucleic Acids Res. 43, 607–617 (2015).

Teng, Y. S., Chan, P. T. & Li, H. M. Differential age-dependent import regulation by signal peptides. PLoS Biol. 10, e1001416 (2012).

Kessler, F. Chloroplast delivery by UPS. Science 338, 622–623 (2012).

Cheung, A. Y., McNellis, T. & Piekos, B. Maintenance of chloroplast components during chromoplast differentiation in the tomato mutant green flesh. Plant Physiol. 101, 1223–1229 (1993).

Dono, G. et al. Color mutations alter the biochemical composition in the San Marzano tomato fruit. Metabolites 10, 110 (2020).

Parry, C., Blonquist, J. M. Jr & Bugbee, B. In situ measurement of leaf chlorophyll concentration: analysis of the optical/absolute relationship. Plant Cell Environ. 37, 2508–2520 (2014).

Gálvez-Valdivieso, G. et al. The high light response in Arabidopsis involves ABA signaling between vascular and bundle sheath cells. Plant Cell 21, 2143–2162 (2009).

Goodstein, D. M. et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40, D1178–D1186 (2012).

Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

Schwacke, R. et al. ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol. 131, 16–26 (2003).

Ossowski, S., Schwab, R. & Weigel, D. Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J. 53, 674–690 (2008).

Fernandez, A. I. et al. Flexible tools for gene expression and silencing in tomato. Plant Physiol. 151, 1729–1740 (2009).

Schwab, R., Ossowski, S., Riester, M., Warthmann, N. & Weigel, D. Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18, 1121–1133 (2006).

Karimi, M., Inze, D. & Depicker, A. GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7, 193–195 (2002).

Chetty, V. J. et al. Evaluation of four Agrobacterium tumefaciens strains for the genetic transformation of tomato (Solanum lycopersicum L.) cultivar Micro-Tom. Plant Cell Rep. 32, 239–247 (2013).

Sun, H. J., Uchii, S., Watanabe, S. & Ezura, H. A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol. 47, 426–431 (2006).

Koornneef, M. et al. Chromosomal instability in cell- and tissue cultures of tomato haploids and diploids. Euphytica 43, 179–186 (1989).

Karimi, M., De Meyer, B. & Hilson, P. Modular cloning in plant cells. Trends Plant Sci. 10, 103–105 (2005).

Wu, F. H. et al. Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation method. Plant Methods 5, 16 (2009).

Kasmati, A. R., Töpel, M., Patel, R., Murtaza, G. & Jarvis, P. Molecular and genetic analyses of Tic20 homologues in Arabidopsis thaliana chloroplasts. Plant J. 66, 877–889 (2011).

Hobson, G. E., Adams, P. & Dixon, T. J. Assessing the color of tomato fruit during ripening. J. Sci. Food Agric. 34, 286–292 (1983).

Pathare, P. B., Opara, U. L. & Al-Said, F. A. Colour measurement and analysis in fresh and processed foods: a review. Food Bioproc. Tech. 6, 36–60 (2013).

Arazuri, S., Jarén, C., Arana, J. I. & de Ciriza, J. P. Influence of mechanical harvest on the physical properties of processing tomato (Lycopersicon esculentum Mill.). J. Food Eng. 80, 190–198 (2007).

Walsby-Tickle, J. et al. Anion-exchange chromatography mass spectrometry provides extensive coverage of primary metabolic pathways revealing altered metabolism in IDH1 mutant cells. Commun. Biol. 3, 247 (2020).

Lisec, J., Schauer, N., Kopka, J., Willmitzer, L. & Fernie, A. R. Corrigendum: Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat. Protoc. 10, 1457 (2015).

Aronsson, H. et al. Nucleotide binding and dimerization at the chloroplast pre-protein import receptor, atToc33, are not essential in vivo but do increase import efficiency. Plant J. 63, 297–311 (2010).

Faurobert, M., Pelpoir, E. & Chaib, J. Phenol extraction of proteins for proteomic studies of recalcitrant plant tissues. Methods Mol. Biol. 355, 9–14 (2007).

Kovacheva, S. et al. In vivo studies on the roles of Tic110, Tic40 and Hsp93 during chloroplast protein import. Plant J. 41, 412–428 (2005).

Kovacheva, S., Bédard, J., Wardle, A., Patel, R. & Jarvis, P. Further in vivo studies on the role of the molecular chaperone, Hsp93, in plastid protein import. Plant J. 50, 364–379 (2007).

Huang, W., Ling, Q., Bédard, J., Lilley, K. & Jarvis, P. In vivo analyses of the roles of essential Omp85-related proteins in the chloroplast outer envelope membrane. Plant Physiol. 157, 147–159 (2011).

Suorsa, M. & Aro, E. M. Expression, assembly and auxiliary functions of photosystem II oxygen-evolving proteins in higher plants. Photosynth. Res. 93, 89–100 (2007).

Andersen, B., Koch, B. & Scheller, H. V. Structural and functional analysis of the reducing side of photosystem I. Physiol. Plant. 84, 154–161 (1992).

Luo, T. et al. Distinct carotenoid and flavonoid accumulation in a spontaneous mutant of Ponkan (Citrus reticulata Blanco) results in yellowish fruit and enhanced postharvest resistance. J. Agric. Food Chem. 63, 8601–8614 (2015).

Li, W. et al. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS ONE 3, e1487 (2008).

Hruz, T. et al. Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv. Bioinformatics 2008, 420747 (2008).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem