- -

Low precision matrix multiplication for efficient deep learning in NVIDIA Carmel processors

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Low precision matrix multiplication for efficient deep learning in NVIDIA Carmel processors

Show simple item record

Files in this item

dc.contributor.author San Juan-Sebastian, Pablo es_ES
dc.contributor.author Rodríguez-Sánchez, Rafael es_ES
dc.contributor.author Igual, Francisco D. es_ES
dc.contributor.author Alonso-Jordá, Pedro es_ES
dc.contributor.author Quintana-Ortí, Enrique S. es_ES
dc.date.accessioned 2022-11-10T19:02:43Z
dc.date.available 2022-11-10T19:02:43Z
dc.date.issued 2021-10 es_ES
dc.identifier.issn 0920-8542 es_ES
dc.identifier.uri http://hdl.handle.net/10251/189610
dc.description.abstract [EN] We introduce a high performance, multi-threaded realization of the gemm kernel for the ARMv8.2 architecture that operates with 16-bit (half precision)/queryKindly check and confirm whether the corresponding author is correctly identified. floating point operands. Our code is especially designed for efficient machine learning inference (and to a certain extent, also training) with deep neural networks. The results on the NVIDIA Carmel multicore processor, which implements the ARMv8.2 architecture, show considerable performance gains for the gemm kernel, close to the theoretical peak acceleration that could be expected when moving from 32-bit arithmetic/data to 16-bit. Combined with the type of convolution operator arising in convolutional neural networks, the speed-ups are more modest though still relevant. es_ES
dc.description.sponsorship This work was supported by projects TIN2017-82972-R and RTI2018-093684-B-I00 from the Ministerio de Ciencia, Innovacion y Universidades, project S2018/TCS-4423 of the Comunidad de Madrid, project PR65/19-22445 of the UCM, and project Prometeo/2019/109 of the Generalitat Valenciana. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof The Journal of Supercomputing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Deep learning es_ES
dc.subject Matrix multiplication es_ES
dc.subject High performance es_ES
dc.subject NVIDIA Carmel system-on-chip (SoC) es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Low precision matrix multiplication for efficient deep learning in NVIDIA Carmel processors es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11227-021-03636-4 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-82972-R/ES/TECNICAS ALGORITMICAS PARA COMPUTACION DE ALTO RENDIMIENTO CONSCIENTE DEL CONSUMO ENERGETICO Y RESISTENTE A ERRORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAM//S2018%2FTCS-4423 / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-093684-B-I00/ES/HETEROGENEIDAD Y ESPECIALIZACION EN LA ERA POST-MOORE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAM//PR65%2F19-22445/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F109//COMUNICACION Y COMPUTACION INTELIGENTES Y SOCIALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation San Juan-Sebastian, P.; Rodríguez-Sánchez, R.; Igual, FD.; Alonso-Jordá, P.; Quintana-Ortí, ES. (2021). Low precision matrix multiplication for efficient deep learning in NVIDIA Carmel processors. The Journal of Supercomputing. 77(10):11257-11269. https://doi.org/10.1007/s11227-021-03636-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11227-021-03636-4 es_ES
dc.description.upvformatpinicio 11257 es_ES
dc.description.upvformatpfin 11269 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 77 es_ES
dc.description.issue 10 es_ES
dc.relation.pasarela S\448133 es_ES
dc.contributor.funder Comunidad de Madrid es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Deng L et al (2013) Recent advances in deep learning for speech research at Microsoft. In: 2013 IEEE international conference on acoustics, speech and signal processing, May, pp 8604–8608 es_ES
dc.description.references Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th international conference on neural information processing systems—vol 1, ser. NIPS’12. Curran Associates Inc., USA, pp 1097–1105 es_ES
dc.description.references Zhang J, Zong C (2015) Deep neural networks in machine translation: an overview. IEEE Intell Syst 30(5):16–25 es_ES
dc.description.references Devlin J et al (2019) BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of 2019 conference North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol 1, pp 4171–4186 es_ES
dc.description.references Sze V et al (2017) Efficient processing of deep neural networks: a tutorial and survey. Proc IEEE 105(12):2295–2329 es_ES
dc.description.references Vaswani A et al (2017) Attention is all you need. In: Advances in neural information processing systems, vol 30, pp 5998–6008 es_ES
dc.description.references Chellapilla K, Puri S, Simard P (2006) High performance convolutional neural networks for document processing. In: International workshop on frontiers in handwriting recognition, available as INRIA-00112631 report from https://hal.inria.fr/inria-00112631 es_ES
dc.description.references Van Zee FG, van de Geijn RA (2015) BLIS: a framework for rapidly instantiating BLAS functionality. ACM Trans Math Softw 41(3):14:1–14:33 es_ES
dc.description.references Dongarra JJ, Du Croz J, Hammarling S, Duff I (1990) A set of level 3 basic linear algebra subprograms. ACM Trans Math Softw 16(1):1–17 es_ES
dc.description.references Goto K, van de Geijn R (2008) Anatomy of high-performance matrix multiplication. ACM Trans Math Softw 34(3):12:1–12:25 es_ES
dc.description.references Low TM, Igual FD, Smith TM, Quintana-Orti ES (2016) Analytical modeling is enough for high-performance blis. ACM Trans Math Softw 43(2):1–18. https://doi.org/10.1145/2925987 es_ES
dc.description.references Fabeiro JF, Andrade D, Fraguela BB (2016) Writing a performance-portable matrix multiplication. Parallel Comput 52:65–77 es_ES
dc.description.references Zee FGV, Smith TM, Marker B, Low TM, Geijn RAVD, Igual FD, Smelyanskiy M, Zhang X, Kistler M, Austel V, Gunnels JA, Killough L (2016) The BLIS framework: experiments in portability. ACM Trans Math Softw 42(2):1–19. https://doi.org/10.1145/2755561 es_ES
dc.description.references Smith TM, van de Geijn R, Smelyanskiy M, Hammond JR, Zee FGV (2014) Anatomy of high-performance many-threaded matrix multiplication. In: IPDPS ’14: Proceedings of the international parallel and distributed processing symposium (to appear) es_ES
dc.description.references Catalán S et al (2016) Architecture-aware configuration and scheduling of matrix multiplication on asymmetric multicore processors. Cluster Comput 19(3):1037–1051 es_ES
dc.description.references Hennessy JL, Patterson DA (2003) Computer architecture: a quantitative approach. Morgan Kaufmann Pub, San Francisco es_ES
dc.description.references San Juan P, Castelló PS, Dolz MF, Alonso-Jordá P, Quintana-Ortí ES (2020) High performance and portable convolution operators for multicore processors. In: Proceedings of 32nd international Symposium on Computer Architecture and High Performance Computing (SBAC-PAD), pp 91–98 es_ES
dc.description.references BLIS Performance benchmarks (2020). https://github.com/flame/blis/blob/master/docs/Performance.md es_ES


This item appears in the following Collection(s)

Show simple item record