Mostrar el registro sencillo del ítem
dc.contributor.author | Galicer, Daniel | es_ES |
dc.contributor.author | Mansilla, Martín | es_ES |
dc.contributor.author | Muro, Santiago | es_ES |
dc.contributor.author | Sevilla Peris, Pablo | es_ES |
dc.date.accessioned | 2022-11-12T19:02:37Z | |
dc.date.available | 2022-11-12T19:02:37Z | |
dc.date.issued | 2021-05-18 | es_ES |
dc.identifier.issn | 2157-5045 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/189655 | |
dc.description.abstract | [EN] We develop a novel decomposition of the monomials in order to study the set of monomial convergence for spaces of holomorphic functions over l(r) for 1 < r <= 2. For H-b. (l(r)), the space of entire functions of bounded type in l(r), we prove that mon H-b (l(r)) is exactly the Marcinkiewicz sequence space m(psi r), where the symbol psi(r) is given by psi(r) (n) :=log(n + 1)(1-1/r) for n is an element of N-0. For the space of m-homogeneous polynomials on l(r), we prove that the set of monomial convergence mon P((m)l(r)) contains the sequence space l(q), where q = (mr')'. Moreover, we show that for any q <= s < infinity, the Lorentz sequence space l(q),(s) lies in mon P((m)l(r)), provided that m is large enough. We apply our results to make an advance in the description of the set of monomial convergence of H-infinity (B-lr) (the space of bounded holomorphic functions on the unit ball of l(r)). As a byproduct we close the gap on certain estimates related to the mixed unconditionality constant for spaces of polynomials over classical sequence spaces. | es_ES |
dc.description.sponsorship | This work was partially supported by projects CONICET PIP 11220130100329CO, ANPCyT PICT 20152224, ANPCyT PICT 2015-2299, ANPCyT PICT 2015-3085, ANPCyT PICT 2018-04250, UBACyT 20020130100474BA, UBACyT 20020130300052BA, UBACyT 20020130300057BA. Mansilla was supported by a CONICET doctoral fellowship. Sevilla-Peris was supported by MINECO/FEDER Project MTM2017-83262-C2-1-P and grant PRX17/00040 of the Spanish Government. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Mathematical Sciences Publishers | es_ES |
dc.relation.ispartof | Analysis & PDE | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Holomorphic function | es_ES |
dc.subject | Homogeneous polynomial | es_ES |
dc.subject | Monomial convergence | es_ES |
dc.subject | Banach sequence space | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | MONOMIAL CONVERGENCE ON l(r) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.2140/apde.2021.14.945 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UBA//20020130100474BA//UBACyT/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83262-C2-1-P/ES/ANALISIS COMPLEJO Y GEOMETRIA EN ESPACIOS DE BANACH/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UBA//20020130300052BA//UBACyT / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UBA//20020130300057BA//UBACyT/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANPCyT//PICT 20152224/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANPCyT//PICT 2015-2299/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANPCyT//PICT 2015-3085/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANPCyT//PICT 2018-04250/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CONICET//PIP 11220130100329CO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//PRX17%2F00040/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Galicer, D.; Mansilla, M.; Muro, S.; Sevilla Peris, P. (2021). MONOMIAL CONVERGENCE ON l(r). Analysis & PDE. 14(3):945-984. https://doi.org/10.2140/apde.2021.14.945 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.2140/apde.2021.14.945 | es_ES |
dc.description.upvformatpinicio | 945 | es_ES |
dc.description.upvformatpfin | 984 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 14 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\460812 | es_ES |
dc.contributor.funder | Universidad de Buenos Aires | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.contributor.funder | Agencia Nacional de Promoción Científica y Tecnológica, Argentina | es_ES |
dc.contributor.funder | Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina | es_ES |