- -

Ammonium Toxicity Alleviation by Silicon is Dependent on Cytokinins in Tomato cv. Micro-Tom

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ammonium Toxicity Alleviation by Silicon is Dependent on Cytokinins in Tomato cv. Micro-Tom

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ferreira Barreto, Rafael es_ES
dc.contributor.author de Mello Prado, Renato es_ES
dc.contributor.author Barbosa Lucio, Jose Clebson es_ES
dc.contributor.author LOPEZ DIAZ, ISABEL es_ES
dc.contributor.author Carrera, Esther es_ES
dc.contributor.author Falleiros Carvalho, Rogerio es_ES
dc.date.accessioned 2022-11-14T19:02:01Z
dc.date.available 2022-11-14T19:02:01Z
dc.date.issued 2022-01 es_ES
dc.identifier.issn 0721-7595 es_ES
dc.identifier.uri http://hdl.handle.net/10251/189720
dc.description.abstract [EN] The objectives were to verify the effects of the lack of cytokinins (CKs), comparing tomato cv. Micro-Tom (MT, wild type) to MT CKX2 (transgenic with less CKs) fed with nitrate (NO3-) and ammonium (NH4+), in the presence and absence of silicon (Si); verify if the attenuation of NH4+ toxicity by Si depends on the increase of CKs in MT; and verify if 6-benzyladenine (6-BA) attenuates NH4+ toxicity in MT. Three experiments were performed with treatments via nutrient solution. First, MT and MT CKX2 were grown with NO3- or NH4+ (5.9 mmol L- 1), in the absence and presence of Si (1.28 mmol L- 1). Second, MT was grown with NO3- or NH4+ (5.9 mmol L- 1), in the absence and presence of Si (1.28 mmol L- 1). Third, MT was grown with NO3- or NH4+ (5.9 mmol L- 1) and 6-BA (from 1e(-10) to 1e(-6) mol L-1) associated with NH4+. The MT and MT CKX2 had a decrease of 18% and 48% in the shoot dry weight, respectively, when fed with NH4+, compared to NO3-. Si attenuated NH4+ toxicity in MT, but not in MT CKX2. This attenuation in MT was accompanied by a decrease in trans-zeatin (tZ) content in the roots and increase in the shoots. 6-BA did not improve the shoot growth of MT fed with NH4+. In conclusion, the alleviation of NH4+ toxicity by Si was dependent on the increase in tZ content in shoots. In CK-deficient plants, Si did not alleviate NH4+ toxicity, and 6-BA did not alleviate NH4+ toxicity in MT shoots. es_ES
dc.description.sponsorship This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brasil (CAPES)-Finance Code 001. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Plant Growth Regulation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Solanum lycopersicum es_ES
dc.subject Cytokinins defciency es_ES
dc.subject CKX2 es_ES
dc.subject Benefcial element es_ES
dc.subject 6- benzyladenine es_ES
dc.subject Ammonium nutrition es_ES
dc.title Ammonium Toxicity Alleviation by Silicon is Dependent on Cytokinins in Tomato cv. Micro-Tom es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00344-021-10314-5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAPES//001/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Ferreira Barreto, R.; De Mello Prado, R.; Barbosa Lucio, JC.; Lopez Diaz, I.; Carrera, E.; Falleiros Carvalho, R. (2022). Ammonium Toxicity Alleviation by Silicon is Dependent on Cytokinins in Tomato cv. Micro-Tom. Journal of Plant Growth Regulation. 41(1):417-428. https://doi.org/10.1007/s00344-021-10314-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00344-021-10314-5 es_ES
dc.description.upvformatpinicio 417 es_ES
dc.description.upvformatpfin 428 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 41 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\460263 es_ES
dc.contributor.funder Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil es_ES
dc.description.references Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344. https://doi.org/10.1046/j.1365-3040.2001.00778.x es_ES
dc.description.references Ariz I, Asensio AC, Zamarreño AM, García-Mina JM, Aparicio-Tejo PM, Moran JF (2013) Changes in the C/N balance caused by increasing external ammonium concentrations are driven by carbon and energy availabilities during ammonium nutrition in pea plants: the key roles of asparagine synthetase and anaplerotic enzymes. Physiol Plant 148:522–537. https://doi.org/10.1111/j.1399-3054.2012.01712.x es_ES
dc.description.references Barreto RF, Prado RM, Leal AJF, Troleis MJB, Silva Junior GB, Monteiro CC, Santos LCN, Carvalho RF (2016) Mitigation of ammonium toxicity by silicon in tomato depends on the ammonium concentration. Acta Agr Scand B-SP 66:483–488. https://doi.org/10.1080/09064710.2016.1178324 es_ES
dc.description.references Barreto RF, Schiavon Júnior AA, Maggio MA, Prado RM (2017) Silicon alleviates ammonium toxicity in cauliflower and in broccoli. Sci Hortic 225:743–750. https://doi.org/10.1016/j.scienta.2017.08.014 es_ES
dc.description.references Barreto RF, Cruz FJR, Gaion LA, Prado RM, Carvalho RF (2018) Accompanying ions of ammonium sources and nitrate : ammonium ratios in tomato plants. J Plant Nutr Soil Sci 181:382–387. https://doi.org/10.1002/jpln.201700413 es_ES
dc.description.references Bataglia OC, Furlani AMC, Teixeira JAF, Furlani PR, Gallo JR (1983) Métodos de análise química de plantas Campinas: Instituto Agronômico: IAC, p. 31 (Circular, 87) es_ES
dc.description.references Britto DT, Kronzucker HJ (2002) NH4+ toxicity in higher plants: a critical review. J Plant Physiol 159:567–584. https://doi.org/10.1078/0176-1617-0774 es_ES
dc.description.references Brugiere N, Jiao SP, Hantke S, Zinselmeier C, Roessler JA, Niu XM, Jones RJ, Habben JE (2003) Cytokinin oxidase gene expression in maize is localized to the vasculature, and is induced by cytokinins, abscisic acid, and abiotic stress. J Plant Physiol 132:1228–1240. https://doi.org/10.1104/pp.102.017707 es_ES
dc.description.references Cueno ME, Imai K, Ochiai K, Okamoto T (2012) Cytokinin dehydrogenase differentially regulates cytokinin and indirectly affects hydrogen peroxide accumulation in tomato leaf. J Plant Physiol 169:834–838. https://doi.org/10.1016/j.jplph.2012.01.008 es_ES
dc.description.references Ferreira DF (2011) Sisvar: a computer statistical analysis system. Cienc Agrotec 35:1039–1042. https://doi.org/10.1590/S1413-70542011000600001 es_ES
dc.description.references Gao Q, Wang Y, Lu X (2014) Effects of exogenous silicon on physiological characteristics of cucumber seedlings under ammonium stress. J Appl Ecol 25:1395–1400 (PMID: 25129941) es_ES
dc.description.references Ginzberg I, Stern R (2016) Strengthening fruit-skin resistance to growth strain by application of plant growth regulators. Sci Hortic 198:150–153. https://doi.org/10.1016/j.scienta.2015.11.016 es_ES
dc.description.references Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2012) Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci 17:172–179. https://doi.org/10.1016/j.tplants.2011.12.005 es_ES
dc.description.references Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. https://doi.org/10.1016/0003-9861(68)90654-1 es_ES
dc.description.references Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:1–32. http://hdl.handle.net/2027/uc2.ark:/13960/t51g1sb8j es_ES
dc.description.references Jiang K, Asami T (2018) Chemical regulators of plant hormones and their applications in basic researchand agriculture. Biosci Biotechnol Biochem 82:1265–1300. https://doi.org/10.1080/09168451.2018.1462693 es_ES
dc.description.references Kang J, Lee Y, Sakakibara H, Martinoia E (2017) Cytokinin transporters: go and stop in signaling. Trends Plant Sci 22:455–461. https://doi.org/10.1016/j.tplants.2017.03.003 es_ES
dc.description.references Kiba T, Kudo T, Kojima M, Sakakibara H (2011) Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin. J Exp Bot 62:1399–1409. https://doi.org/10.1093/JXB/ERQ410 es_ES
dc.description.references Kleiber T, Calomme M, Borowiak K (2015) The effect of choline-stabilized orthosilicic acid on microelements and silicon concentration, photosynthesis activity and yield of tomato grown under Mn stress. Plant Physiol Bioch 96:180–188. https://doi.org/10.1016/j.plaphy.2015.07.033 es_ES
dc.description.references Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382. https://doi.org/10.1016/0076-6879(87)48036-1 es_ES
dc.description.references Markovich O, Steiner E, Kouřil Š, Tarkowski P, Aharoni A, Elbaum R (2017) Silicon promotes cytokinin biosynthesis and delays senescence in Arabidopsis and sorghum. Plant Cell Environ 40:1189–1196. https://doi.org/10.1111/pce.12913 es_ES
dc.description.references Miller CO, Skoog F, Okomura FS, Von Saltza MH, Strong FM (1956) Isolation, structure and synthesis of kinetin, a substance promoting cell division. J Am Chem Soc 78:1375–1380. https://doi.org/10.1021/ja01588a032 es_ES
dc.description.references Miller AJ, Fan X, Orsel M, Smith SJ, Wells DM (2007) Nitrate transport and signalling. J Exp Bot 58:2297–2306. https://doi.org/10.1093/jxb/erm066 es_ES
dc.description.references Morales M, Munné-Bosch S (2019) Malondialdehyde: facts and artifacts. Plant Physiol 180:1246–1250. https://doi.org/10.1104/pp.19.00405 es_ES
dc.description.references Pino-Nunes LE (2009) Controle do desenvolvimento vegetal pela interação auxina-citocinina: uma nova abordagem baseada no estudo de mutantes de tomateiro (Solanum lycopersicum cv Micro-Tom) 141 f Tese (Doutorado em Biologia na Agricultura e no Ambiente) – CENA, Piracicaba es_ES
dc.description.references Rahayu YS, Walch-Liu P, Neumann L, Römheld V, von Wirén N, Bangerth F (2005) Root-derived cytokinins as long-distance signals for NO3- induced stimulation of leaf growth. J Exp Bot 56:1143–1152. https://doi.org/10.1093/jxb/eri107 es_ES
dc.description.references Savvas D, Ntatsi G (2015) Biostimulant activity of silicon in horticulture. Sci Hortic 196:66–81. https://doi.org/10.1016/j.scienta.2015.09.010 es_ES
dc.description.references Seo M, Jikumaru Y, Kamiya Y (2011) Profiling of hormones and related metabolites in seed dormancy and germination studies. Methods Mol Biol 773:99–111. https://doi.org/10.1007/978-1-61779-231-1_7 es_ES
dc.description.references Shtratnikova VY, Kudryakova NV, Kudoyarova GR, Korobova AV, Akhiyarova GR, Danilova MN, Kusnetsov VV, Kulaeva ON (2015) Effects of nitrate and ammonium on growth of Arabidopsis thaliana plants transformed with the ARR5::GUS construct and a role for cytokinins in suppression of disturbances induced by the presence of ammonium. Russ J Plant Physl 62:741–752. https://doi.org/10.7868/S0015330315060159 es_ES
dc.description.references Walch-Liu P, Neumann G, Bangerth F, Engels C (2000) Rapid effects of nitrogen form on leaf morphogenesis in tobacco. J Exp Bot 51:227–237. https://doi.org/10.1093/jexbot/51.343.227 es_ES
dc.description.references Werner T, Motyka V, Strnad M, Schmülling T (2001) Regulation of plant growth by cytokinin. PNAS 98:10487–10492. https://doi.org/10.1073/pnas.171304098 es_ES
dc.description.references Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550. https://doi.org/10.1105/tpc.014928 es_ES
dc.description.references Werner T, Holst K, Pörs Y, Guivarc’h A, Mustroph A, Chriqui D, Grimm B, Schmülling T (2008) Cytokinin deficiency causes distinct changes of sink and source parameters in tobacco shoots and roots. J Exp Bot 59:2659–2672. https://doi.org/10.1093/jxb/ern134 es_ES
dc.description.references Wu X, He J, Chen J, Yang S, Zha D (2014) Alleviation of exogenous 6-benzyladenine on two genotypesof eggplant (Solanum melongena Mill) growth under salt stress. Protoplasma 251:169–176. https://doi.org/10.1007/s00709-013-0535-6 es_ES
dc.description.references Zavaleta-Mancera HA, López-Delgado H, Loza-Tavera H, Mora-Herrera M, Trevilla-García C, Vargas-Suárez M, Ougham H (2007) Cytokinin promotes catalase and ascorbate peroxidase activities and preserves the chloroplast integrity during dark-senescence. J Plant Physiol 164:1572–1582. https://doi.org/10.1016/j.jplph.2007.02.003 es_ES
dc.description.references Zhu Y, Gong H (2014) Beneficial effects of silicon on salt and drought tolerance in plants. Agron Sustain Dev 34:455–472. https://doi.org/10.1007/s13593-013-0194-1 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem