Mostrar el registro sencillo del ítem
dc.contributor.author | Ferreira Barreto, Rafael | es_ES |
dc.contributor.author | de Mello Prado, Renato | es_ES |
dc.contributor.author | Barbosa Lucio, Jose Clebson | es_ES |
dc.contributor.author | LOPEZ DIAZ, ISABEL | es_ES |
dc.contributor.author | Carrera, Esther | es_ES |
dc.contributor.author | Falleiros Carvalho, Rogerio | es_ES |
dc.date.accessioned | 2022-11-14T19:02:01Z | |
dc.date.available | 2022-11-14T19:02:01Z | |
dc.date.issued | 2022-01 | es_ES |
dc.identifier.issn | 0721-7595 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/189720 | |
dc.description.abstract | [EN] The objectives were to verify the effects of the lack of cytokinins (CKs), comparing tomato cv. Micro-Tom (MT, wild type) to MT CKX2 (transgenic with less CKs) fed with nitrate (NO3-) and ammonium (NH4+), in the presence and absence of silicon (Si); verify if the attenuation of NH4+ toxicity by Si depends on the increase of CKs in MT; and verify if 6-benzyladenine (6-BA) attenuates NH4+ toxicity in MT. Three experiments were performed with treatments via nutrient solution. First, MT and MT CKX2 were grown with NO3- or NH4+ (5.9 mmol L- 1), in the absence and presence of Si (1.28 mmol L- 1). Second, MT was grown with NO3- or NH4+ (5.9 mmol L- 1), in the absence and presence of Si (1.28 mmol L- 1). Third, MT was grown with NO3- or NH4+ (5.9 mmol L- 1) and 6-BA (from 1e(-10) to 1e(-6) mol L-1) associated with NH4+. The MT and MT CKX2 had a decrease of 18% and 48% in the shoot dry weight, respectively, when fed with NH4+, compared to NO3-. Si attenuated NH4+ toxicity in MT, but not in MT CKX2. This attenuation in MT was accompanied by a decrease in trans-zeatin (tZ) content in the roots and increase in the shoots. 6-BA did not improve the shoot growth of MT fed with NH4+. In conclusion, the alleviation of NH4+ toxicity by Si was dependent on the increase in tZ content in shoots. In CK-deficient plants, Si did not alleviate NH4+ toxicity, and 6-BA did not alleviate NH4+ toxicity in MT shoots. | es_ES |
dc.description.sponsorship | This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brasil (CAPES)-Finance Code 001. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of Plant Growth Regulation | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Solanum lycopersicum | es_ES |
dc.subject | Cytokinins defciency | es_ES |
dc.subject | CKX2 | es_ES |
dc.subject | Benefcial element | es_ES |
dc.subject | 6- benzyladenine | es_ES |
dc.subject | Ammonium nutrition | es_ES |
dc.title | Ammonium Toxicity Alleviation by Silicon is Dependent on Cytokinins in Tomato cv. Micro-Tom | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00344-021-10314-5 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CAPES//001/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Ferreira Barreto, R.; De Mello Prado, R.; Barbosa Lucio, JC.; Lopez Diaz, I.; Carrera, E.; Falleiros Carvalho, R. (2022). Ammonium Toxicity Alleviation by Silicon is Dependent on Cytokinins in Tomato cv. Micro-Tom. Journal of Plant Growth Regulation. 41(1):417-428. https://doi.org/10.1007/s00344-021-10314-5 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00344-021-10314-5 | es_ES |
dc.description.upvformatpinicio | 417 | es_ES |
dc.description.upvformatpfin | 428 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 41 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\460263 | es_ES |
dc.contributor.funder | Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil | es_ES |
dc.description.references | Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344. https://doi.org/10.1046/j.1365-3040.2001.00778.x | es_ES |
dc.description.references | Ariz I, Asensio AC, Zamarreño AM, García-Mina JM, Aparicio-Tejo PM, Moran JF (2013) Changes in the C/N balance caused by increasing external ammonium concentrations are driven by carbon and energy availabilities during ammonium nutrition in pea plants: the key roles of asparagine synthetase and anaplerotic enzymes. Physiol Plant 148:522–537. https://doi.org/10.1111/j.1399-3054.2012.01712.x | es_ES |
dc.description.references | Barreto RF, Prado RM, Leal AJF, Troleis MJB, Silva Junior GB, Monteiro CC, Santos LCN, Carvalho RF (2016) Mitigation of ammonium toxicity by silicon in tomato depends on the ammonium concentration. Acta Agr Scand B-SP 66:483–488. https://doi.org/10.1080/09064710.2016.1178324 | es_ES |
dc.description.references | Barreto RF, Schiavon Júnior AA, Maggio MA, Prado RM (2017) Silicon alleviates ammonium toxicity in cauliflower and in broccoli. Sci Hortic 225:743–750. https://doi.org/10.1016/j.scienta.2017.08.014 | es_ES |
dc.description.references | Barreto RF, Cruz FJR, Gaion LA, Prado RM, Carvalho RF (2018) Accompanying ions of ammonium sources and nitrate : ammonium ratios in tomato plants. J Plant Nutr Soil Sci 181:382–387. https://doi.org/10.1002/jpln.201700413 | es_ES |
dc.description.references | Bataglia OC, Furlani AMC, Teixeira JAF, Furlani PR, Gallo JR (1983) Métodos de análise química de plantas Campinas: Instituto Agronômico: IAC, p. 31 (Circular, 87) | es_ES |
dc.description.references | Britto DT, Kronzucker HJ (2002) NH4+ toxicity in higher plants: a critical review. J Plant Physiol 159:567–584. https://doi.org/10.1078/0176-1617-0774 | es_ES |
dc.description.references | Brugiere N, Jiao SP, Hantke S, Zinselmeier C, Roessler JA, Niu XM, Jones RJ, Habben JE (2003) Cytokinin oxidase gene expression in maize is localized to the vasculature, and is induced by cytokinins, abscisic acid, and abiotic stress. J Plant Physiol 132:1228–1240. https://doi.org/10.1104/pp.102.017707 | es_ES |
dc.description.references | Cueno ME, Imai K, Ochiai K, Okamoto T (2012) Cytokinin dehydrogenase differentially regulates cytokinin and indirectly affects hydrogen peroxide accumulation in tomato leaf. J Plant Physiol 169:834–838. https://doi.org/10.1016/j.jplph.2012.01.008 | es_ES |
dc.description.references | Ferreira DF (2011) Sisvar: a computer statistical analysis system. Cienc Agrotec 35:1039–1042. https://doi.org/10.1590/S1413-70542011000600001 | es_ES |
dc.description.references | Gao Q, Wang Y, Lu X (2014) Effects of exogenous silicon on physiological characteristics of cucumber seedlings under ammonium stress. J Appl Ecol 25:1395–1400 (PMID: 25129941) | es_ES |
dc.description.references | Ginzberg I, Stern R (2016) Strengthening fruit-skin resistance to growth strain by application of plant growth regulators. Sci Hortic 198:150–153. https://doi.org/10.1016/j.scienta.2015.11.016 | es_ES |
dc.description.references | Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2012) Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci 17:172–179. https://doi.org/10.1016/j.tplants.2011.12.005 | es_ES |
dc.description.references | Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. https://doi.org/10.1016/0003-9861(68)90654-1 | es_ES |
dc.description.references | Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:1–32. http://hdl.handle.net/2027/uc2.ark:/13960/t51g1sb8j | es_ES |
dc.description.references | Jiang K, Asami T (2018) Chemical regulators of plant hormones and their applications in basic researchand agriculture. Biosci Biotechnol Biochem 82:1265–1300. https://doi.org/10.1080/09168451.2018.1462693 | es_ES |
dc.description.references | Kang J, Lee Y, Sakakibara H, Martinoia E (2017) Cytokinin transporters: go and stop in signaling. Trends Plant Sci 22:455–461. https://doi.org/10.1016/j.tplants.2017.03.003 | es_ES |
dc.description.references | Kiba T, Kudo T, Kojima M, Sakakibara H (2011) Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin. J Exp Bot 62:1399–1409. https://doi.org/10.1093/JXB/ERQ410 | es_ES |
dc.description.references | Kleiber T, Calomme M, Borowiak K (2015) The effect of choline-stabilized orthosilicic acid on microelements and silicon concentration, photosynthesis activity and yield of tomato grown under Mn stress. Plant Physiol Bioch 96:180–188. https://doi.org/10.1016/j.plaphy.2015.07.033 | es_ES |
dc.description.references | Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382. https://doi.org/10.1016/0076-6879(87)48036-1 | es_ES |
dc.description.references | Markovich O, Steiner E, Kouřil Š, Tarkowski P, Aharoni A, Elbaum R (2017) Silicon promotes cytokinin biosynthesis and delays senescence in Arabidopsis and sorghum. Plant Cell Environ 40:1189–1196. https://doi.org/10.1111/pce.12913 | es_ES |
dc.description.references | Miller CO, Skoog F, Okomura FS, Von Saltza MH, Strong FM (1956) Isolation, structure and synthesis of kinetin, a substance promoting cell division. J Am Chem Soc 78:1375–1380. https://doi.org/10.1021/ja01588a032 | es_ES |
dc.description.references | Miller AJ, Fan X, Orsel M, Smith SJ, Wells DM (2007) Nitrate transport and signalling. J Exp Bot 58:2297–2306. https://doi.org/10.1093/jxb/erm066 | es_ES |
dc.description.references | Morales M, Munné-Bosch S (2019) Malondialdehyde: facts and artifacts. Plant Physiol 180:1246–1250. https://doi.org/10.1104/pp.19.00405 | es_ES |
dc.description.references | Pino-Nunes LE (2009) Controle do desenvolvimento vegetal pela interação auxina-citocinina: uma nova abordagem baseada no estudo de mutantes de tomateiro (Solanum lycopersicum cv Micro-Tom) 141 f Tese (Doutorado em Biologia na Agricultura e no Ambiente) – CENA, Piracicaba | es_ES |
dc.description.references | Rahayu YS, Walch-Liu P, Neumann L, Römheld V, von Wirén N, Bangerth F (2005) Root-derived cytokinins as long-distance signals for NO3- induced stimulation of leaf growth. J Exp Bot 56:1143–1152. https://doi.org/10.1093/jxb/eri107 | es_ES |
dc.description.references | Savvas D, Ntatsi G (2015) Biostimulant activity of silicon in horticulture. Sci Hortic 196:66–81. https://doi.org/10.1016/j.scienta.2015.09.010 | es_ES |
dc.description.references | Seo M, Jikumaru Y, Kamiya Y (2011) Profiling of hormones and related metabolites in seed dormancy and germination studies. Methods Mol Biol 773:99–111. https://doi.org/10.1007/978-1-61779-231-1_7 | es_ES |
dc.description.references | Shtratnikova VY, Kudryakova NV, Kudoyarova GR, Korobova AV, Akhiyarova GR, Danilova MN, Kusnetsov VV, Kulaeva ON (2015) Effects of nitrate and ammonium on growth of Arabidopsis thaliana plants transformed with the ARR5::GUS construct and a role for cytokinins in suppression of disturbances induced by the presence of ammonium. Russ J Plant Physl 62:741–752. https://doi.org/10.7868/S0015330315060159 | es_ES |
dc.description.references | Walch-Liu P, Neumann G, Bangerth F, Engels C (2000) Rapid effects of nitrogen form on leaf morphogenesis in tobacco. J Exp Bot 51:227–237. https://doi.org/10.1093/jexbot/51.343.227 | es_ES |
dc.description.references | Werner T, Motyka V, Strnad M, Schmülling T (2001) Regulation of plant growth by cytokinin. PNAS 98:10487–10492. https://doi.org/10.1073/pnas.171304098 | es_ES |
dc.description.references | Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550. https://doi.org/10.1105/tpc.014928 | es_ES |
dc.description.references | Werner T, Holst K, Pörs Y, Guivarc’h A, Mustroph A, Chriqui D, Grimm B, Schmülling T (2008) Cytokinin deficiency causes distinct changes of sink and source parameters in tobacco shoots and roots. J Exp Bot 59:2659–2672. https://doi.org/10.1093/jxb/ern134 | es_ES |
dc.description.references | Wu X, He J, Chen J, Yang S, Zha D (2014) Alleviation of exogenous 6-benzyladenine on two genotypesof eggplant (Solanum melongena Mill) growth under salt stress. Protoplasma 251:169–176. https://doi.org/10.1007/s00709-013-0535-6 | es_ES |
dc.description.references | Zavaleta-Mancera HA, López-Delgado H, Loza-Tavera H, Mora-Herrera M, Trevilla-García C, Vargas-Suárez M, Ougham H (2007) Cytokinin promotes catalase and ascorbate peroxidase activities and preserves the chloroplast integrity during dark-senescence. J Plant Physiol 164:1572–1582. https://doi.org/10.1016/j.jplph.2007.02.003 | es_ES |
dc.description.references | Zhu Y, Gong H (2014) Beneficial effects of silicon on salt and drought tolerance in plants. Agron Sustain Dev 34:455–472. https://doi.org/10.1007/s13593-013-0194-1 | es_ES |