- -

A GRU deep learning system against attacks in software defined networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A GRU deep learning system against attacks in software defined networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Assis, Marcos V.O. es_ES
dc.contributor.author Carvalho, Luiz F. es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Proença Jr, Mario L. es_ES
dc.date.accessioned 2022-11-14T19:02:18Z
dc.date.available 2022-11-14T19:02:18Z
dc.date.issued 2021-03-01 es_ES
dc.identifier.issn 1084-8045 es_ES
dc.identifier.uri http://hdl.handle.net/10251/189732
dc.description.abstract [EN] The management of modern network environments is becoming more and more complex due to new requirements of devices' heterogeneity regarding the popularization of the Internet of Things (IoT), as well as the dynamic traffic required by next-generation applications and services. To address this problem, Software-defined Networking (SDN) emerges as a management paradigm able to handle these problems through a centralized high-level network approach. However, this centralized characteristic also creates a critical failure spot since the central controller may be targeted by malicious users aiming to impair the network operation. This paper proposes an SDN defense system based on the analysis of single IP flow records, which uses the Gated Recurrent Units (GRU) deep learning method to detect DDoS and intrusion attacks. This direct flow inspection enables faster mitigation responses, minimizing the attack's impact over the SDN. The proposed model is tested against several different machine learning approaches over two public datasets, the CICDDoS 2019 and the CICIDS 2018. Furthermore, a lightweight mitigation approach is presented and evaluated through performance tests regarding each detection method. Finally, a feasibility test is performed regarding the throughput of flows per second that each detection method can analyze. This test is accomplished through the use of real IP Flow data collected at a large-scale network. The results point out promising detection rates and an elevated amount of analyzed flows per second, which makes GRU a feasible approach for the proposed system. es_ES
dc.description.sponsorship This study has been partially supported by the National Council for Scientific and Technological Development (CNPq) of Brazil under Grant of Project 310668/2019-0; by the "Ministerio de Economia y Competitividad" in the "Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento" within the project under Grant TIN2017-84802-C2-1-P; and by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) by the granting of a scholarship through the "Programa de Doutorado Sanduiche no Exterior (PDSE) 2019". Finally, this work was supported by Federal University of Parana (UFPR) under Project Banpesq/2014016797. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Network and Computer Applications es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Gated recurrent units es_ES
dc.subject SDN es_ES
dc.subject Deep learning es_ES
dc.subject DDoS es_ES
dc.subject Intrusion detection es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title A GRU deep learning system against attacks in software defined networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jnca.2020.102942 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84802-C2-1-P/ES/RED COGNITIVA DEFINIDA POR SOFTWARE PARA OPTIMIZAR Y SECURIZAR TRAFICO DE INTERNET DE LAS COSAS CON INFORMACION CRITICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CNPq//310668%2F2019-0/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UFPR//Banpesq%2F2014016797/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Assis, MV.; Carvalho, LF.; Lloret, J.; Proença Jr, ML. (2021). A GRU deep learning system against attacks in software defined networks. Journal of Network and Computer Applications. 177:1-13. https://doi.org/10.1016/j.jnca.2020.102942 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jnca.2020.102942 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 177 es_ES
dc.relation.pasarela S\473236 es_ES
dc.contributor.funder Universidade Federal do Paraná es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil es_ES
dc.contributor.funder Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem