Mostrar el registro sencillo del ítem
dc.contributor.author | Solano Cutillas, P. | es_ES |
dc.contributor.author | Pérez Perales, David | es_ES |
dc.contributor.author | Alemany Díaz, María Del Mar | es_ES |
dc.date.accessioned | 2022-11-17T19:01:44Z | |
dc.date.available | 2022-11-17T19:01:44Z | |
dc.date.issued | 2022-07 | es_ES |
dc.identifier.issn | 1109-2858 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/189859 | |
dc.description.abstract | [EN] In this paper, an optimization tool based on a MILP model to support the teaching assignment process is proposed. It considers not only hierarchical issues among lecturers but also their preferences to teach a particular subject, the non-regular time schedules throughout the academic year, different type of credits, number of groups and other specific characteristics. Besides, it adds restrictions based on the time compatibility among the different subjects, the lecturers' availability, the maximum number of subjects per lecturer, the maximum number of lecturers per subject as well as the maximum and minimum saturation level for each lecturer, all of them in order to increase the teaching quality. Schedules heterogeneity and other features regarding the operation of some universities justify the usefulness of this model since no study that deals with all of them has been found in the literature review. Model validation has been performed with two real data sets collected from one academic year schedule at the Spanish University Universitat Politecnica de Valencia. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Operational Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Teaching assignment problem | es_ES |
dc.subject | Non-regular schedules | es_ES |
dc.subject | Time compatibility | es_ES |
dc.subject | Type of credits | es_ES |
dc.subject | Mixed integer linear programming | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.title | A mathematical programming tool for an efficient decision-making on teaching assignment under non-regular time schedules | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s12351-021-00638-1 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Solano Cutillas, P.; Pérez Perales, D.; Alemany Díaz, MDM. (2022). A mathematical programming tool for an efficient decision-making on teaching assignment under non-regular time schedules. Operational Research. 22(3):2899-2942. https://doi.org/10.1007/s12351-021-00638-1 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s12351-021-00638-1 | es_ES |
dc.description.upvformatpinicio | 2899 | es_ES |
dc.description.upvformatpfin | 2942 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\443348 | es_ES |
dc.description.references | Al-Yakoob SM, Sherali HD (2006) Mathematical programming models and algorithms for a class-faculty assignment problem. Eur J Oper Res 173:488–507. https://doi.org/10.1016/j.ejor.2005.01.052 | es_ES |
dc.description.references | Babaei H, Karimpour J, Hadidi A (2015) A survey of approaches for university course timetabling problem. Comput Ind Eng 86:43–59. https://doi.org/10.1016/j.cie.2014.11.010 | es_ES |
dc.description.references | Badri MA (1996) A two-stage multiobjective scheduling model for faculty course time assignments. Eur J Oper Res 94:16–28 | es_ES |
dc.description.references | Badri M, Davis LD, Davis DF, Hollingsworth J (1998) A multi-objective course scheduling model: combining faculty preferences for courses and times. Comput Oper Res 25(4):303–316 | es_ES |
dc.description.references | Bettinelli A, Cacchiani V, Roberti R et al (2015) An overview of curriculum-based course timetabling. TOP 23(2):313–349. https://doi.org/10.1007/s11750-015-0366-z | es_ES |
dc.description.references | Birbas T, Daskalaki S, Housos E (2009) School timetabling for quality student and teacher schedules. J sched 12(2):177–197 | es_ES |
dc.description.references | Burke E, Petrovic S (2002) Recent research directions in automated timetabling. Eur J Oper Res 140(2):266–280 | es_ES |
dc.description.references | Ceschia S, Di Gaspero L, Schaerf A (2014) The generalized balanced academic curriculum problem with heterogeneous classes. Ann Oper Res 218:147–163 | es_ES |
dc.description.references | Daskalak S, Birbas T (2005) Efficient solutions for a university timetabling problem through integer programming. Eur J Oper Res 160:106–120 | es_ES |
dc.description.references | Daskalaki S, Birbas T, Housos E (2004) An integer programming formulation for a case study in university timetabling. Eur J Oper Res 153:117–135 | es_ES |
dc.description.references | Dimopoulou M, Miliotis P (2001) Implementation of a university course and examination timetabling system. Eur J Oper Res 130:202–213 | es_ES |
dc.description.references | Dorneles A, Araújo O, Buriol L (2017) A column generation approach to high school timetabling modeled as a multicommodity flow problem. Eur J Oper Res 256(3):685–695 | es_ES |
dc.description.references | ETSII, Escuela Técnica Superior de Ingenieros Industriales. Horarios Curso 2015/16. http://www.etsii.upv.es/horario/horarioses.php?cacad=2015.html/ Accessed 1 June 2015 | es_ES |
dc.description.references | Fonseca GHG, Santos G, Carrano E, Stidsen T (2017) Integer programming techniques for educational timetabling. Eur J Oper Res 262(1):28–39 | es_ES |
dc.description.references | Gotlieb CC (1963) The construction of class-teacher timetable. In: Proceedings of the IFIP Congress 62, Munich, North Holland, Pub. Co., Amsterdam | es_ES |
dc.description.references | Hultberg TH, Cardoso DM (1997) The teacher assignment problem: a special case of the fixed charge transportation problem. Eur J Oper Res 101:463–473 | es_ES |
dc.description.references | Ismayilova NA, Sagir M, Gasimov RN (2007) A multiobjective faculty course time slot assignment problem with preferences. Math Comput Modell 46:1017–1029 | es_ES |
dc.description.references | ITC (2019) https://www.itc2019.org/home | es_ES |
dc.description.references | Katsaragakis IV, Tassopoulos IX, Beligiannis GN (2015) A comparative study of modern heuristics on the school timetabling problem. Algorithms 8:723–742 | es_ES |
dc.description.references | Kingston JH (2013) Educational timetabling. In: Uyar AS, Ozcan E, Urquhart N (eds) Automated scheduling and planning, studies in computational intelligence, vol 505. Springer, Berlin, pp 91–108 | es_ES |
dc.description.references | Kristiansen S, Stidsen TR (2013) A comprehensive study of educational timetabling—a survey. Technical report, DTU Management Engineering | es_ES |
dc.description.references | Kristiansen S, Sørensen M, Stidsen TR (2015) Integer programming for the generalized high school timetabling problem. J Sched 18:377–392 | es_ES |
dc.description.references | Landa-Silva D, Obit JH (2008) Great deluge with non-linear decay rate for solving course timetabling problems. In: Intelligent systems, 2008. IS’08. In: 4th international IEEE conference, IEEE, vol 1, pp 8–11 | es_ES |
dc.description.references | McCollum B, Ireland N (2006) University timetabling: bridging the gap between research and practice. In: Proceedings of the 5th international conference on the practice and theory of automated timetabling, pp. 15–35 | es_ES |
dc.description.references | Mühlenthaler M, Wanka R (2016) Fairness in academic course timetabling. Ann Oper Res 239:171–188. https://doi.org/10.1007/s10479-014-1553-2 | es_ES |
dc.description.references | Pillay N (2016) A review of hyper-heuristics for educational timetabling. Ann Oper Res 239:3–38. https://doi.org/10.1007/s10479-014-1688-1 | es_ES |
dc.description.references | Salem M, Al-Yakoob SM, Sherali HD (2015) Mathematical models and algorithms for a high school timetabling problem. Comput Oper Res 61:56–68 | es_ES |
dc.description.references | Santos HG, Uchoa E, Ochi LS, Maculan N (2012) Strong bounds with cut and column generation for class-teacher timetabling. Ann Oper Res 194:399–412 | es_ES |
dc.description.references | Saviniec L, Santos M, Costa A, Santos L (2020) Pattern-based models and a cooperative parallel metaheuristic for high school timetabling problems. Eur J Oper Res 280(3):1064–1081 | es_ES |
dc.description.references | Schaerf A (1999) A survey of automated timetabling. Artif Intell Rev 13(2):87–127 | es_ES |
dc.description.references | Skoullis VI, Tassopoulos IX, Beligiannis GN (2017) Solving the high school timetabling problem using a hybrid cat swarm optimization based algorithm. Appl Soft Comput 52:277–289 | es_ES |
dc.description.references | Maximal Software (2021) Optimization Modeling http://www.maximalsoftware.com/mpl/. Acceded on 11th January 2021 | es_ES |
dc.description.references | Sørensen M, Dahms FHW (2014) A two-stage decomposition of high school timetabling applied to cases in Denmark. Comput Oper Res 43:36–49 | es_ES |
dc.description.references | Tan JS, Goh SL, Kendall G, Sabar NR (2021) A survey of the state-of-the-art of optimisation methodologies in school timetabling problems. Expert Syst Appl 165. | es_ES |
dc.description.references | Tassopoulos IX, Beligiannis GN (2012) A hybrid particle swarm optimization based algorithm for high school timetabling problems. Appl Soft Comput 12:3472–3489 | es_ES |
dc.description.references | Tassopoulos IX, Iliopoulou C, Beligiannis GN (2020) Solving the Greek school timetabling problem by a mixed integer programming model. J Oper Res Soc 71(1):117–132 | es_ES |
dc.description.references | Unitime (2020) https://www.unitime.org | es_ES |
dc.subject.ods | 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos | es_ES |