Llopis-Castelló, D.; Paredes Palacios, R.; Parreño-Lara, M.; García-Segura, T.; Pellicer, E. (2021). Automatic Classification and Quantification of Basic Distresses on Urban Flexible Pavement through Convolutional Neural Networks. Journal of Transportation Engineering, Part B: Pavements. 147(4):1-8. https://doi.org/10.1061/JPEODX.0000321
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/189868
Título:
|
Automatic Classification and Quantification of Basic Distresses on Urban Flexible Pavement through Convolutional Neural Networks
|
Autor:
|
Llopis-Castelló, David
Paredes Palacios, Roberto
Parreño-Lara, Mario
García-Segura, Tatiana
Pellicer, Eugenio
|
Entidad UPV:
|
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports
Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
|
Fecha difusión:
|
|
Resumen:
|
[EN] Pavement condition assessment is a critical step in road pavement management. In contrast to the automatic and objective methods used for rural roads, the most commonly used method in urban areas is the development ...[+]
[EN] Pavement condition assessment is a critical step in road pavement management. In contrast to the automatic and objective methods used for rural roads, the most commonly used method in urban areas is the development of visual surveys usually filled out by technicians that leads to a subjective pavement assessment. While most previous studies on automatic identification of distresses focused on crack detection, this research aims not only to cover the identification and classification of multiple urban flexible pavement distresses (longitudinal and transverse cracking, alligator cracking, raveling, potholes, and patching), but also to quantify them through the application of Convolutional Neural Networks. Additionally, this study also proposes a methodology for an automatic pavement assessment considering the different stages developed in this research. This methodology allows for a more efficient and reliable pavement assessment, minimizing the cost and time required by the current visual surveys.
[-]
|
Palabras clave:
|
Pavement maintenance
,
Pavement distress
,
Deep learning
,
Convolutional neural network
,
Image processing
|
Derechos de uso:
|
Reserva de todos los derechos
|
Fuente:
|
Journal of Transportation Engineering, Part B: Pavements. (eissn:
2573-5438
)
|
DOI:
|
10.1061/JPEODX.0000321
|
Editorial:
|
American Society of Civil Engineers
|
Versión del editor:
|
https://doi.org/10.1061/JPEODX.0000321
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//RTC-2017-6148-7-AR//SISTEMA INTEGRAL DE MANTENIMIENTO EFICIENTE DE PAVIMENTOS URBANOS/
|
Agradecimientos:
|
The study presented in this paper is part of the research project
titled SIMEPU Sistema Integral de Mantenimiento Eficiente de
Pavimentos Urbanos, funded by the Spanish Ministries of Science
and Innovation and Universities, ...[+]
The study presented in this paper is part of the research project
titled SIMEPU Sistema Integral de Mantenimiento Eficiente de
Pavimentos Urbanos, funded by the Spanish Ministries of Science
and Innovation and Universities, as well as the European Regional
Development Fund under Grant No. RTC-2017-6148-7. The
authors also acknowledge the support of partner companies Pavasal
Empresa Constructora, S.A. and CPS Infraestructuras, Movilidad y
Medio Ambiente, S.L. and the Valencia City Council.
[-]
|
Tipo:
|
Artículo
|