- -

On a graph related to permutability in finite groups

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

On a graph related to permutability in finite groups

Show full item record

Ballester Bolinches, A.; Cossey, J.; Esteban Romero, R. (2010). On a graph related to permutability in finite groups. Annali di Matematica Pura ed Applicata. 4(189). doi:10.1007/s10231-009-0124-7

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/19002

Files in this item

Item Metadata

Title: On a graph related to permutability in finite groups
Author: Ballester Bolinches, Adolfo Cossey, John Esteban Romero, Ramón
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Issued date:
Abstract:
For a finite group G we define the graph $\Gamma(G)$ to be the graph whose vertices are the conjugacy classes of cyclic subgroups of G and two conjugacy classes $\{\mathcal {A}, \mathcal {B}\}$ are joined by an edge if for ...[+]
Subjects: Finite group , Graph , Soluble group , Permutability
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Annali di Matematica Pura ed Applicata. (issn: 0373-3114 ) (eissn: 1618-1891 )
DOI: 10.1007/s10231-009-0124-7
Publisher:
Springer
Publisher version: http://dx.doi.org/10.1007/s10231-009-0124-7
Project ID:
Ministerio de Educación y Ciencia
FEDER
Generalitat
Description: This paper has been published in Annali di Matematica Pura ed Applicata. Series IV, 189(4):567-570 (2010). Copyright 2010 by Springer-Verlag. The final publication is available at www.springerlink.com. http://link.springer.com/article/10.1007%2Fs10231-009-0124-7 http://dx.doi.org/10.1007/s10231-009-0124-7
Thanks:
This paper has been suported by the research grants MTM2007-68010-C03-02 from MEC (Spain) and FEDER (European Union) and GV/2007/243 from Generalitat (Valencian Community).
Type: Artículo
URL: http://dx.doi.org/10.1007/s10231-009-0124-7

References

Abe S., Iiyori N.: A generalization of prime graphs of finite groups. Hokkaido Math. J. 29(2), 391–407 (2000)

Agrawal R.K.: Finite groups whose subnormal subgroups permute with all Sylow subgroups. Proc. Am. Math. Soc. 47(1), 77–83 (1975)

Alejandre M.J., Ballester-Bolinches A., Pedraza-Aguilera M.C.: Finite soluble groups with permutable subnormal subgroups. J. Algebra 240(2), 705–722 (2001) [+]
Abe S., Iiyori N.: A generalization of prime graphs of finite groups. Hokkaido Math. J. 29(2), 391–407 (2000)

Agrawal R.K.: Finite groups whose subnormal subgroups permute with all Sylow subgroups. Proc. Am. Math. Soc. 47(1), 77–83 (1975)

Alejandre M.J., Ballester-Bolinches A., Pedraza-Aguilera M.C.: Finite soluble groups with permutable subnormal subgroups. J. Algebra 240(2), 705–722 (2001)

Ballester-Bolinches A., Esteban-Romero R.: Sylow permutable subnormal subgroups of finite groups. J. Algebra 251(2), 727–738 (2002)

Cooper C.D.H.: Power automorphisms of a group. Math. Z. 107, 335–356 (1968)

Herzog M., Longobardi P., Maj M.: On a commuting graph on conjugacy classes of groups. Commun. Algebra 37(10), 3369–3387 (2009)

Huppert B.: Endliche Gruppen I, vol. 134 of Grund. Math. Wiss. Springer, Berlin (1967)

Longobardi P.: Gruppi finite a fattoriali modulari. Note Math. II, 73–100 (1982)

Neumann B.: A problem of Paul Erdős on groups. J. Austral. Math. Soc. Ser. A 21, 467–472 (1976)

Ore O.: Contributions to the theory of groups of finite order. Duke Math. J. 5, 431–460 (1939)

Schmidt R.: Subgroup lattices of groups. De Gruyter Expositions in Mathematics, vol. 14. Walter de Gruyter, Berlin (1994)

Zacher G.: I gruppi risolubli finiti in cui i sottogruppi di composizione coincidono con i sottogrupi quasi-normali. Atti Accad. Naz. Lincei Rend. cl. Sci. Fis. Mat. Natur. 37(8), 150–154 (1964)

[-]

This item appears in the following Collection(s)

Show full item record