- -

Collusion detection in public procurement auctions with machine learning algorithms

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Collusion detection in public procurement auctions with machine learning algorithms

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Rodríguez, Manuel J. es_ES
dc.contributor.author Rodríguez-Montequín, Vicente es_ES
dc.contributor.author Ballesteros-Pérez, Pablo es_ES
dc.contributor.author Love, Peter E. D. es_ES
dc.contributor.author Signor, Regis es_ES
dc.date.accessioned 2022-11-22T19:02:48Z
dc.date.available 2022-11-22T19:02:48Z
dc.date.issued 2022-01 es_ES
dc.identifier.issn 0926-5805 es_ES
dc.identifier.uri http://hdl.handle.net/10251/190053
dc.description.abstract [EN] Collusion is an illegal practice by which some competing companies secretly agree on the prices (bids) they will submit to a future auction. Worldwide, collusion is a pervasive phenomenon in public sector procurement. It undermines the benefits of a competitive marketplace and wastes taxpayers¿ money. More often than not, contracting authorities cannot identify non-competitive bids and frequently award contracts at higher prices than they would have in collusion¿s absence. This paper tests the accuracy of eleven Machine Learning (ML) algorithms for detecting collusion using collusive datasets obtained from Brazil, Italy, Japan, Switzerland and the United States. While the use of ML in public procurement remains largely unexplored, its potential use to identify collusion are promising. ML algorithms are quite information-intensive (they need a substantial number of historical auctions to be calibrated), but they are also highly flexible tools, producing reasonable detection rates even with a minimal amount of information. es_ES
dc.description.sponsorship The authors are grateful to the Swiss Competition Commission (COMCO) and Dr. David Imhof for their valuable comments and sharing some of the collusive datasets used in this paper. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Automation in Construction es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Auction es_ES
dc.subject Collusion es_ES
dc.subject Contracting es_ES
dc.subject Construction es_ES
dc.subject Machine learning es_ES
dc.subject Procurement es_ES
dc.subject.classification PROYECTOS DE INGENIERIA es_ES
dc.title Collusion detection in public procurement auctions with machine learning algorithms es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.autcon.2021.104047 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation García-Rodríguez, MJ.; Rodríguez-Montequín, V.; Ballesteros-Pérez, P.; Love, PED.; Signor, R. (2022). Collusion detection in public procurement auctions with machine learning algorithms. Automation in Construction. 133:1-13. https://doi.org/10.1016/j.autcon.2021.104047 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.autcon.2021.104047 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 133 es_ES
dc.relation.pasarela S\450254 es_ES
dc.contributor.funder Federal Authorities of the Swiss Confederation es_ES
dc.subject.ods 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem