Mostrar el registro sencillo del ítem
dc.contributor.author | Zatrochová, S. | es_ES |
dc.contributor.author | Martínez-Pérez-Cejuela, H. | es_ES |
dc.contributor.author | Catalá-Icardo, Mónica | es_ES |
dc.contributor.author | Simó-Alfonso, E. F. | es_ES |
dc.contributor.author | Lhotská, I. | es_ES |
dc.contributor.author | atínský, D. | es_ES |
dc.contributor.author | Herrero-Martínez, J. M. | es_ES |
dc.date.accessioned | 2022-11-24T19:03:27Z | |
dc.date.available | 2022-11-24T19:03:27Z | |
dc.date.issued | 2022-03 | es_ES |
dc.identifier.issn | 0026-3672 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/190171 | |
dc.description.abstract | [EN] A novel coating based on hybrid monolith with metal-organic framework (MOF) onto conventional Teflon-coated magnetic stir bars was developed. For this purpose, the external surface of the Teflon stir bar was firstly vinylized in order to immobilize a glycidyl methacrylate (GMA)-based polymer onto the magnet. Then, an amino-modified MOF of type MIL-101 (NH2-MIL-101(Al)) was covalently attached to the GMA-based monolith. After the synthesis process, several parameters affecting extraction of target estrogens by stir bar sorptive extraction (SBSE) including pH, ionic strength, extraction time, stirring rate, desorption solvent, and desorption time were also investigated. The resulting hybrid monolith was evaluated as SBSE sorbent for extraction of three estrogens (estrone, 17 beta-estradiol, estriol) and synthetic 17 beta-ethinylestradiol from water and human urine samples followed by HPLC with fluorescence detection (excitation and emission wavelengths, 280 and 310 nm, respectively). Under the optimal experimental conditions, the analytical figures of the method were established, achieving satisfactory limits of detection in the range of 0.015-0.58 mu g L-1, recovery results ranging from 70 to 95% with RSD less than 6%, and precision values (intra- and inter-extraction units) below 6%. | es_ES |
dc.description.sponsorship | H. Martinez-Perez-Cejuela thanks the MSIU for a PhD FPU grant (ref. FPU18/02179). S. Z., I. L., and D. S. acknowledge the financial support of the Charles University (Project SVV 260 548), Charles University Grant Agency (Project GAUK No. 1070120), and EFSA-CDN project (no. CZ.02.1.01/0.0/0.0/16_019/0000841) cofunded by ERDF. This article is based upon work from the Sample Preparation Task Force and Network, supported by the Division of Analytical Chemistry of the European Chemical Society. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Microchimica Acta | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Estrogens | es_ES |
dc.subject | Hybrid monolith | es_ES |
dc.subject | Metal-organic framework | es_ES |
dc.subject | PTFE magnet | es_ES |
dc.subject | Stir bar | es_ES |
dc.subject | Extraction | es_ES |
dc.subject | HPLC-fluorescence detection | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.title | Development of hybrid monoliths incorporating metal¿organic frameworks for stir bar sorptive extraction coupled with liquid chromatography for determination of estrogen endocrine disruptors in water and human urine samples | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00604-022-05208-6 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FEDER//CZ.02.1.01%2F0.0%2F0.0%2F16_019%2F0000841/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MCIU//FPU18%2F02179/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CU//1070120/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CU//SVV 260 548/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia | es_ES |
dc.description.bibliographicCitation | Zatrochová, S.; Martínez-Pérez-Cejuela, H.; Catalá-Icardo, M.; Simó-Alfonso, EF.; Lhotská, I.; Atínský, D.; Herrero-Martínez, JM. (2022). Development of hybrid monoliths incorporating metal¿organic frameworks for stir bar sorptive extraction coupled with liquid chromatography for determination of estrogen endocrine disruptors in water and human urine samples. Microchimica Acta. 189(3):1-10. https://doi.org/10.1007/s00604-022-05208-6 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00604-022-05208-6 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 189 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.pmid | 35132465 | es_ES |
dc.identifier.pmcid | PMC8821068 | es_ES |
dc.relation.pasarela | S\465821 | es_ES |
dc.contributor.funder | Charles University in Prague | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.description.references | Vilela CLS, Bassin JP, Peixoto RS (2018) Water contamination by endocrine disruptors: impacts, microbiological aspects and trends for environmental protection. Environ Pollut 235:546–559. https://doi.org/10.1016/j.envpol.2017.12.098 | es_ES |
dc.description.references | Windsor MF, Ormerod JS, Tyler RC (2017) Endocrine disruption in aquatic systems: up-scaling research to address ecological consequences. Biol Rev 93:626–641. https://doi.org/10.1111/brv.12360 | es_ES |
dc.description.references | Wang L, Chen Y (2020) Luminescence-Sensing Tb-MOF nanozyme for the detection and degradation of estrogen endocrine disruptors. ACS Appl Mater Interfaces 12:8351–8358. https://doi.org/10.1021/acsami.9b22537 | es_ES |
dc.description.references | Bilal M, Barceló D, Iqbal HM (2021) Occurrence, environmental fate, ecological issues, and redefining of endocrine disruptive estrogens in water resources. Sci Tot Environ 800:149635. https://doi.org/10.1016/j.scitotenv.2021.149635 | es_ES |
dc.description.references | Lopes KL, de Oliveira HL, Serpa JAS, Torres JA, Nogueira FGE, de Freitas VAA, Borges KB, Silva MC (2021) Nanomagnets based on activated carbon/magnetite nanocomposite for determination of endocrine disruptors in environmental water samples. Microchem J 168:106366. https://doi.org/10.1016/j.microc.2021.106366 | es_ES |
dc.description.references | Gonsioroski A, Mourikes VE, Flaws JA (2020) Endocrine disruptors in water and their effects on the reproductive system. Int J Mol Sci 21:1929. https://doi.org/10.3390/ijms21061929 | es_ES |
dc.description.references | Rozaini MNH, Kiatkittipong W, Saad B, Yahaya N, Shaharun MS, Sangu SS, Saheed MSM, Wong YF, Mohamad M, Sambudi NS, Lim JW (2021) Green adsorption–desorption of mixed triclosan, triclocarban, 2-phenylphenol, bisphenol A and 4-tert-octylphenol using MXene encapsulated polypropylene membrane protected micro-solid-phase extraction device in amplifying the HPLC analysis. Microchem J 170:106695. https://doi.org/10.1016/j.microc.2021.10669 | es_ES |
dc.description.references | Balabanič D, Rupnik M, Klemenčič AK (2011) Negative impact of endocrine-disrupting compounds on human reproductive health. Reprod Fertil Dev 23:403–416. https://doi.org/10.1071/RD09300 | es_ES |
dc.description.references | Valcárcel Y, Valdehíta A, Becerra E, Alda MLD, Gil A, Gorga M, Petrovic M, Barceló D, Navas JM (2018) Determining the presence of chemicals with suspected endocrine activity in drinking water from the Madrid region (Spain) and assessment of their estrogenic, androgenic and thyroidal activities. Chemosphere 201:388–398. https://doi.org/10.1016/j.chemosphere.2018.02.099 | es_ES |
dc.description.references | Waring RH, Harris RM (2005) Endocrine disrupters: a human risk? Mol Cell Endocrinol 244:2–9. https://doi.org/10.1016/j.mce.2005.02.007 | es_ES |
dc.description.references | Adamusova H, Bosakova Z, Coufal P, Pacakova V (2014) Analysis of estrogen mimics in edible matrices-a review. J Sep Sci 37:885–905. https://doi.org/10.1002/jssc.201301234 | es_ES |
dc.description.references | Denver N, Khan S, Homer NZM, MacLean MR, Andrew R (2019) Current strategies for quantification of estrogens in clinical research. J Steroid Biochem Mol Biol 192:105373. https://doi.org/10.1016/j.jsbmb.2019.04.022 | es_ES |
dc.description.references | Omar TFT, Ahmad A, Aris ZA, Yusoff MF (2016) Endocrine disrupting compounds (EDCs) in environmental matrices: review of analytical strategies for pharmaceuticals, estrogenic hormones, and alkylphenol compounds. TrAC Trend Anal Chem 85:241–259. https://doi.org/10.1016/j.trac.2016.08.004 | es_ES |
dc.description.references | Kalogiouri NP, Samanidou VF (2019) Recent trends in the development of green microextraction techniques for the determination of hazardous organic compounds wine. Curr Anal Chem 15:788–800. https://doi.org/10.2174/1573411015666190328185337 | es_ES |
dc.description.references | Speltini A, Scalabrini A, Maraschi F, Sturini M, Profumo A (2017) Newest applications of molecularly imprinted polymers for extraction of contaminants from environmental and food matrices: a review. Anal Chim Acta 974:1–26. https://doi.org/10.1016/j.aca.2017.04.042 | es_ES |
dc.description.references | Kabir A, Locatelli M, Ulusoy HI (2017) Recent trends in microextraction techniques employed in analytical and bioanalytical sample preparation. Separations 4:36. https://doi.org/10.3390/separations4040036 | es_ES |
dc.description.references | Garcés RN, Gionfriddo E, Ríos GGA, Alam MdN, Boyaci E, Bojko B, Singh V, Grandy J, Pawliszyn J (2018) Advances in solid phase microextraction and perspective on future directions. Anal Chem 90:302–360. https://doi.org/10.1021/acs.analchem.7b04502 | es_ES |
dc.description.references | Pena-Pereira F, Bendicho C, Pavlović DM, Martín-Esteban A, Díaz-Álvarez M, Pan Y, Cooper J, Yang Z, Safarik I, Pospiskova K, Segundo MA, Psillakis E (2021) Miniaturized analytical methods for determination of environmental contaminants of emerging concern–a review. Anal Chim Acta 1158:238108. https://doi.org/10.1016/j.aca.2020.11.040 | es_ES |
dc.description.references | Ochiai N, Sasamoto K, David F, Sandra P (2018) Recent developments of stir bar sorptive extraction for food applications: extension to polar solutes. J Agric Food Chem 66(28):7249–7255. https://doi.org/10.1021/acs.jafc.8b02182 | es_ES |
dc.description.references | He M, Wang Y, Zhang Q, Zang L, Chen B, Hu B (2021) Stir bar sorptive extraction and its application. J Chromatogr A 1637:461810. https://doi.org/10.1016/j.talanta.2021.122332 | es_ES |
dc.description.references | Fumes HB, Silva RM, Andrade NF, Nazario DCE, Lanças MF (2015) Recent advances and future trends in new materials for sample preparation. TrAC Trends Anal Chem 71:9–25. https://doi.org/10.1016/j.trac.2015.04.011 | es_ES |
dc.description.references | Di X, Wang H, Guo X, Wang X, Liu Y (2022) Magnetic layered double hydroxide/zeolitic imidazolate framework-8 nanocomposite as a novel adsorbent for enrichment of four endocrine disrupting compounds in milk samples. J Hazard Mater 421:126753. https://doi.org/10.1016/j.jhazmat.2021.126753 | es_ES |
dc.description.references | Kirchon A, Feng L, Drake HF, Joseph EA, Zhou HC (2018) From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chem Soc Rev 47:8611–8638. https://doi.org/10.1039/C8CS00688A | es_ES |
dc.description.references | Gu ZY, Tang CX, Chang NA, Yan XP (2012) Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation. Acc Chem Res 45:734–745. https://doi.org/10.1021/ar2002599 | es_ES |
dc.description.references | Gutiérrez-Serpa A, Pacheco-Fernández I, Pasán J, Pino V (2019) Metal–organic frameworks as key materials for solid-phase microextraction devices—a review. Separations 6:47. https://doi.org/10.3390/separations6040047 | es_ES |
dc.description.references | Fontanals N, Marcé RM, Borrull F (2019) Materials for solid-phase extraction of organic compounds. Separations 6:56. https://doi.org/10.3390/separations6040056 | es_ES |
dc.description.references | Vállez-Gomis V, Grau J, Benedé JL, Giokas DL, Chisvert A, Salvador A (2021) Fundamentals and applications of stir bar sorptive dispersive microextraction: a tutorial review. Anal Chim Acta 338271https://doi.org/10.1016/j.aca.2021.338271 | es_ES |
dc.description.references | Giesbers M, Carrasco-Correa EJ, Simó-Alfonso EF, Herrero-Martínez JM (2019) Hybrid monoliths with metal-organic frameworks in spin columns for extraction of non- steroidal drugs prior to their quantitation by reversed-phase HPLC. Microchim Acta 189:759. https://doi.org/10.1007/s00604-019-3923-6 | es_ES |
dc.description.references | Lirio S, Liu WL, Lin CL, Lin CH, Huang HY (2016) Aluminum based metal-organic framework-polymer monolith in solid-phase microextraction of penicillins in river water and milk samples. J Chromatogr A 1428:236–245. https://doi.org/10.1016/j.chroma.2015.05.043 | es_ES |
dc.description.references | Martínez-Pérez-Cejuela H, Guiñez M, Simó-Alfonso EF, Amorós P, El-Haskouri J, Herrero-Martínez JM (2020) In situ growth of metal-organic framework HKUST-1 in an organic polymer as sorbent for nitrated and oxygenated polycyclic aromatic hydrocarbon in environmental water samples prior to quantitation by HPLC-UV. Microchim Acta 187:1–9. https://doi.org/10.1007/s00604-020-04265-z | es_ES |
dc.description.references | Molavi H, Eskandari A, Shojaei A, Mousavi AS (2018) Enhancing CO2/N2 adsorption selectivity via post-synthetic modification of NH2-UiO-66(Zr). Micropor Mesopor Mat 257:193–201. https://doi.org/10.1016/j.micromeso.2017.08.043 | es_ES |
dc.description.references | Catalá-Icardo M, Torres-Cartas S, Meseguer-Lloret S, Gómez-Benito C, Carrasco-Correa EJ, Simó-Alfonso EF, Ramis-Ramos G, Herrero-Martínez JM (2017) Preparation of organic monolithic columns in polytetrafluoroethylene tubes for reversed-phase liquid chromatography. Anal Chim Acta 960:160–167. https://doi.org/10.1016/j.aca.2017.01.012 | es_ES |
dc.description.references | Soriano-Sorribes A, Arráez-González R, Esteve-Turrillas FA, Armenta S, Herrero-Martínez JM (2019) Development of a molecularly imprinted monolithic polymer disk for agitation-extraction of ecgonine methyl ester from environmental water. Talanta 199:388–395. https://doi.org/10.1016/j.talanta.2019.02.077 | es_ES |
dc.description.references | Martínez-Pérez-Cejuela H, Carrasco-Correa J, Shahat A, Simó-Alfonso EF, Herrero-Martínez JM (2019) Incorporation of metal-organic framework amino-modified MIL-101 into glycidyl methacrylate monoliths for nano LC separation. J Sep Sci 42:834–842. https://doi.org/10.1002/jssc.201801135 | es_ES |
dc.description.references | Hasan CK, Ghiasvand A, Lewis TW, Nesterenko PN, Paull B (2020) Recent advances in stir-bar sorptive extraction: coatings, technical improvements, and applications. Anal Chim Acta 1139:222–240. https://doi.org/10.1016/j.aca.2020.08.021 | es_ES |
dc.description.references | Ahmadijokani F, Tajahmadi S, Rezakazemi M, Sehat AA, Molavi H, Aminabhavi TM, Arjmand M (2021) Aluminum-based metal-organic frameworks for adsorptive removal of anti-cancer (methotrexate) drug from aqueous solutions. J Environ Manage 277:111448. https://doi.org/10.1016/j.jenvman.2020.111448 | es_ES |
dc.description.references | Bromberg L, Klichko Y, Chang EP, Speakman S, Straut CM, Wilusz E, Hatton TA (2012) Alkylaminopyridine-modified aluminum aminoterephthalate metal-organic frameworks as components of reactive self-detoxifying materials. ACS Appl Mater Interfaces 4:4595–4602. https://doi.org/10.1021/am3009696 | es_ES |
dc.description.references | Hu C, He M, Chen B, Zhong C, Hu B (2013) Polydimethylsiloxane/metal-organic frameworks coated stir bar sorptive extraction coupled to high performance liquid chromatography-ultraviolet detector for the determination of estrogens in environmental water samples. J Chromatogr A 1310:21–30. https://doi.org/10.1016/j.chroma.2013.08.047 | es_ES |
dc.description.references | Almeida C, Nogueira JMF (2006) Determination of steroid sex hormones in water and urine matrices by stir bar sorptive extraction and liquid chromatography with diode array detection. J Pharm Biomed Anal 48:1303–1311. https://doi.org/10.1016/j.jpba.2006.02.037 | es_ES |
dc.description.references | Gao G, Li S, Li S, Wang Y, Zhao P, Zhang X, Hou X (2018) A combination of computational−experimental study on metal-organic frameworks MIL-53(Al) as sorbent for simultaneous determination of estrogens and glucocorticoids in water and urine samples by dispersive micro-solid-phase extraction coupled to UPLC-MS/MS. Talanta 180:358–367. https://doi.org/10.1016/j.talanta.2017.12.071 | es_ES |
dc.description.references | Gao G, Li S, Li S, Zhao L, Wang T, Hou X (2018) Development and application of vortex-assisted membrane extraction based on metal-organic framework mixed-matrix membrane for the analysis of estrogens in human urine. Anal Chim Acta 1023:35–43. https://doi.org/10.1016/j.aca.2018.04.013 | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |
dc.subject.ods | 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos | es_ES |