- -

Polyamide 6.6 Degradation through Photo-Fenton Process

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Polyamide 6.6 Degradation through Photo-Fenton Process

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Marcelino-Pérez, Edgar es_ES
dc.contributor.author BONET-ARACIL, MARILÉS es_ES
dc.contributor.author Bou-Belda, Eva es_ES
dc.contributor.author Amat Payá, Ana María es_ES
dc.contributor.author Arqués Sanz, Antonio es_ES
dc.contributor.author Vicente Candela, Rafael es_ES
dc.date.accessioned 2022-11-24T19:03:47Z
dc.date.available 2022-11-24T19:03:47Z
dc.date.issued 2022-06-10 es_ES
dc.identifier.uri http://hdl.handle.net/10251/190187
dc.description.abstract [EN] Synthetic polymers have become essential in our life, nevertheless, the high production and the low recycling around the world have caused serious problems of contamination in soil and water. In addition, its fragmentation into microplastics in environmental conditions has exacerbated the ecological problems due to its possible ingestion by organisms and its high capacity to transport and release a wide variety of organic pollutants. Photo-Fenton process was used to evaluated its capacity to degrade PA6.6 microplastic under simulated solar irradiation and natural solar irradiation plus LED visible light in order to get a best knowledge about its behavior in environmental conditions. PA6.6 was degraded for 7 h through photo-Fenton process under simulated solar irradiation. Superficial defects were observed along the PA6.6 microplastic after degradation experiments. However, FT-IR analysis did not show the formation of additional bands which indicated the formation of new products. DSC analysis showed changes in the melting point of the PA6.6 after the photo-Fenton treatment at different times. The assays carried out under natural solar irradiation showed lower degradation of the PA6.6 under the same experimental conditions, nevertheless, it was observed an increase of the specific surface area 90 times higher in the PA6.6 treated for 10 h. es_ES
dc.description.sponsorship The authors wish to thank the Spanish Ministry of Science, Innovation and Universities (MCIU) for funding under the CalypSol Project (Reference: RTI2018-097997-B-C31-AR). PhD Scholarship from CONACYT for E. Marcelino-Perez (709357) is acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher Trans Tech Publications es_ES
dc.relation.ispartof Materials Science Forum es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Polyamide es_ES
dc.subject Microplastic es_ES
dc.subject Photo-Fenton es_ES
dc.subject Degradation es_ES
dc.subject.classification INGENIERIA TEXTIL Y PAPELERA es_ES
dc.subject.classification QUIMICA FISICA es_ES
dc.title Polyamide 6.6 Degradation through Photo-Fenton Process es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4028/p-28e9b7 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097997-B-C31/ES/TECNOLOGIAS AVANZADAS E HIBRIDAS PARA ELIMINACION DE CONTAMINANTES, MICROCONTAMINANTES, REUSO Y REVALORIZ. EN DIFERENTES AGUAS RESIDUALES, INCLUYENDO ENFOQUES TECNO-ECONOMICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACYT//709357/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi es_ES
dc.description.bibliographicCitation Marcelino-Pérez, E.; Bonet-Aracil, M.; Bou-Belda, E.; Amat Payá, AM.; Arqués Sanz, A.; Vicente Candela, R. (2022). Polyamide 6.6 Degradation through Photo-Fenton Process. Materials Science Forum. 1063:243-252. https://doi.org/10.4028/p-28e9b7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.4028/p-28e9b7 es_ES
dc.description.upvformatpinicio 243 es_ES
dc.description.upvformatpfin 252 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 1063 es_ES
dc.identifier.eissn 1662-9752 es_ES
dc.relation.pasarela S\466576 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.description.references Information on https://www.plasticseurope.org/en/resources/publications/4312-plastics-facts-(2020). es_ES
dc.description.references S. Chatterjee, S. Sharma, Microplastics in our oceans and marine health, F. Actions Sci. Rep. 19 (2019) 54–61. es_ES
dc.description.references B. Worm, H. K. Lotze, I. Jubinville, C. Wilcox, J. Jambeck, Plastic as a Persistent Marine Pollutant, Annu. Rev. Environ. Resour. 42 (2017) 1–26. es_ES
dc.description.references S. Wolff, J. Kerpen, J. Prediger, L. Barkmann, L. Müller, Determination of the microplastics emission in the effluent of a municipal waste water treatment plant using Raman microspectroscopy, Water Res. X, 2 (2019) 100014. es_ES
dc.description.references H. S. Auta, C. U. Emenike, S. H. Fauziah, Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions, Environ. Int., 102 (2017) 165–176. es_ES
dc.description.references H. S. Auta, C. U. Emenike, S. H. Fauziah, Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation, Environ. Pollut. 231 (2017) 1552–1559. es_ES
dc.description.references K. Zhang, A. H. Hamidian, A. Tubić, Y. Zhang, J. K. H. Fang, C. Wu, P. K. S. Lam , Understanding plastic degradation and microplastic formation in the environment: A review, Environ. Pollut. 274 (2021) 116554. es_ES
dc.description.references A. A. Horton, D. K. A. Barnes, Microplastic pollution in a rapidly changing world: Implications for remote and vulnerable marine ecosystems, Sci. Total Environ. 738 (2020) 140349. es_ES
dc.description.references H. Zang, J. Zhou, M. R. Marshall, D. R. Chadwick, Y. Wen, D. L. Jones, Microplastics in the agroecosystem: Are they an emerging threat to the plant-soil system?, Soil Biol. Biochem. 148 (2020) 107926. es_ES
dc.description.references M. Lehtiniemi, S. Hartikainen, P. Näkki, J. Engström-Öst, A. Koistinen, O. Setälä, Size matters more than shape: Ingestion of primary and secondary microplastics by small predators, Food Webs. 17 (2018) e00097. es_ES
dc.description.references C. Wang, J. Zhao, B. Xing, Environmental source, fate, and toxicity of microplastics, J. Hazard. Mater. 407 (2020) 124357. es_ES
dc.description.references Y. Xiang, L. Jiang, Y. Zhou, Z. Lou, D. Zhi, J. Yang, S. S. Lam, Microplastics and environmental pollutants: Key interaction and toxicology in aquatic and soil environments, J. Hazard. Mater. 422 (2021) 126843. es_ES
dc.description.references Y. Deng, R. Zhao, Advanced Oxidation Processes (AOPs) in Wastewater Treatment, Curr. Pollut. Reports. 1 (2015) 167–176. es_ES
dc.description.references A. Bakir, S. J. Rowland, R. C. Thompson, Transport of persistent organic pollutants by microplastics in estuarine conditions, Estuar. Coast. Shelf Sci. 140 (2014) 14–21. es_ES
dc.description.references D. Feldman, Polyamide nanocomposites, J. Macromol. Sci. Part A Pure Appl. Chem. 54 (2017) 255–262. es_ES
dc.description.references J. Friedrich, P. Zalar, M. Mohorčič, U. Klun, A. Kržan, Ability of fungi to degrade synthetic polymer nylon-6, Chemosphere. 67 (2007) 2089–(2095). es_ES
dc.description.references N. Yamano, N. Kawasaki, S. Ida, A. Nakayama, Biodegradation of polyamide 4 in seawater, Polym. Degrad. Stab. 166 (2019) 230–236. es_ES
dc.description.references L. Zhao, C. Su, W. Liu, R. Qin, L. Tang, X. Deng, S. Wu, M. Chen, Exposure to polyamide 66 microplastic leads to effects performance and microbial community structure of aerobic granular sludge, Ecotoxicol. Environ. Saf. 190 (2019) 110070. es_ES
dc.description.references J. M. Lee, R. Busquets, I. C. Choi, S. H. Lee, J. K. Kim, L. C. Campos, Photocatalytic degradation of polyamide 66: Evaluating the feasibility of photocatalysis as a microfibre-targeting technology, Water (Switzerland). 12 (2020) 1–20. es_ES
dc.description.references L. Sørensen, A. S. Groven, I. A. Hovsbakken, O. Del Puerto, D. F. Krause, A. Sarno, A. N. Booth, UV degradation of natural and synthetic microfibers causes fragmentation and release of polymer degradation products and chemical additives, Sci. Total Environ. 755 (2021) 143170. es_ES
dc.description.references N. Vasanthan, D. R. Salem, Structure characterization of heat set and drawn polyamide 66 fibers by FTIR spectroscopy, Mater. Res. Innov. 4 (2001) 155–160. es_ES
dc.description.references P. N. Thanki, R. P. Singh, Photo-oxidative degradation of nylon 66 under accelerated weathering, Polymer (Guildf). 39 (1998) 6363–6367. es_ES
dc.description.references J. Charles, G. R. Ramkumaar, S. Azhagiri, S. Gunasekaran, FTIR and thermal studies on nylon-66 and 30% glass fibre reinforced nylon-66, E-Journal Chem. 6 (2009) 23–33. es_ES
dc.description.references F. Navarro-Pardo, G. Martínez-Barrera, A. L. Martínez-Hernández, V. M. Castaño, J. L. Rivere-Armenta, F. Medellín-Rodríguez, C. Velasco-Santos, Effects on the thermo-mechanical and crystallinity properties of nylon 6,6 electrospun fibres reinforced with one dimensional (1D) and two dimensional (2D) carbon, Materials (Basel). 6 (2013) 3494–3513. es_ES
dc.description.references A. M. Pannase, R. K. Singh, B. Ruj, P. Gupta, Decomposition of polyamide via slow pyrolysis: Effect of heating rate and operating temperature on product yield and composition, J. Anal. Appl. Pyrolysis. 151 (2020) 104886. es_ES
dc.description.references L. A. Díaz-Alejo, E. C. Menchaca-Campos, J. Uruchurtu Chavarín, R. Sosa-Fonseca, M. A. García-Sánchez, Effects of the addition of ortho - And para NH2 substituted tetraphenylporphyrins on the structure of nylon 66, Int. J. Polym. Sci. 2013 (2013) 1-14. es_ES
dc.description.references N. Vasanthan, Crystallinity determination of nylon 66 by density measurement and fourier transform infrared (FTIR) spectroscopy, J. Chem. Educ. 89 (2012) 387–390. es_ES
dc.description.references G. Zhang, T. Watanabe, H. Yoshida, T. Kawai, Phase transition behavior of nylon-66, nylon-48, and blends, Polym. J. 35 (2003) 173–177. es_ES
dc.description.references A. Dawelbeit, M. Yu, Transient Confinement of the Quaternary Tetramethylammonium Tetrafluoroborate Salt in Nylon 6 , 6 Fibres : Structural Developments for High Performance Properties, Materials, 14 (2021) 2938. es_ES
dc.description.references Information on https://www.ncbi.nlm.nih.gov/books/NBK304366/. es_ES
dc.description.references S. Dominguez, P. Ribao, M. J. Rivero, I. Ortiz, Influence of radiation and TiO2 concentration on the hydroxyl radicals generation in a photocatalytic LED reactor. Application to dodecylbenzenesulfonate degradation, Appl. Catal. B Environ. 178 (2014) 165–169. es_ES
dc.description.references S. Yurdakal, C. Garlisi, L. Özcan, M. Bellardita, and G. Palmisano, (Photo)catalyst characterization techniques: Adsorption isotherms and BET, SEM, FTIR, UV-Vis, photoluminescence, and electrochemical characterizations, in: G. Marcì, L. Palmisano (Eds.), Heterogeneous Photocatalysis Relationships with Heterogeneous Catalysis and Perspectives, Elsevier, 2019, pp.87-152. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem