Mostrar el registro sencillo del ítem
dc.contributor.author | Marcelino-Pérez, Edgar | es_ES |
dc.contributor.author | BONET-ARACIL, MARILÉS | es_ES |
dc.contributor.author | Bou-Belda, Eva | es_ES |
dc.contributor.author | Amat Payá, Ana María | es_ES |
dc.contributor.author | Arqués Sanz, Antonio | es_ES |
dc.contributor.author | Vicente Candela, Rafael | es_ES |
dc.date.accessioned | 2022-11-24T19:03:47Z | |
dc.date.available | 2022-11-24T19:03:47Z | |
dc.date.issued | 2022-06-10 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/190187 | |
dc.description.abstract | [EN] Synthetic polymers have become essential in our life, nevertheless, the high production and the low recycling around the world have caused serious problems of contamination in soil and water. In addition, its fragmentation into microplastics in environmental conditions has exacerbated the ecological problems due to its possible ingestion by organisms and its high capacity to transport and release a wide variety of organic pollutants. Photo-Fenton process was used to evaluated its capacity to degrade PA6.6 microplastic under simulated solar irradiation and natural solar irradiation plus LED visible light in order to get a best knowledge about its behavior in environmental conditions. PA6.6 was degraded for 7 h through photo-Fenton process under simulated solar irradiation. Superficial defects were observed along the PA6.6 microplastic after degradation experiments. However, FT-IR analysis did not show the formation of additional bands which indicated the formation of new products. DSC analysis showed changes in the melting point of the PA6.6 after the photo-Fenton treatment at different times. The assays carried out under natural solar irradiation showed lower degradation of the PA6.6 under the same experimental conditions, nevertheless, it was observed an increase of the specific surface area 90 times higher in the PA6.6 treated for 10 h. | es_ES |
dc.description.sponsorship | The authors wish to thank the Spanish Ministry of Science, Innovation and Universities (MCIU) for funding under the CalypSol Project (Reference: RTI2018-097997-B-C31-AR). PhD Scholarship from CONACYT for E. Marcelino-Perez (709357) is acknowledged. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Trans Tech Publications | es_ES |
dc.relation.ispartof | Materials Science Forum | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Polyamide | es_ES |
dc.subject | Microplastic | es_ES |
dc.subject | Photo-Fenton | es_ES |
dc.subject | Degradation | es_ES |
dc.subject.classification | INGENIERIA TEXTIL Y PAPELERA | es_ES |
dc.subject.classification | QUIMICA FISICA | es_ES |
dc.title | Polyamide 6.6 Degradation through Photo-Fenton Process | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4028/p-28e9b7 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097997-B-C31/ES/TECNOLOGIAS AVANZADAS E HIBRIDAS PARA ELIMINACION DE CONTAMINANTES, MICROCONTAMINANTES, REUSO Y REVALORIZ. EN DIFERENTES AGUAS RESIDUALES, INCLUYENDO ENFOQUES TECNO-ECONOMICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CONACYT//709357/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi | es_ES |
dc.description.bibliographicCitation | Marcelino-Pérez, E.; Bonet-Aracil, M.; Bou-Belda, E.; Amat Payá, AM.; Arqués Sanz, A.; Vicente Candela, R. (2022). Polyamide 6.6 Degradation through Photo-Fenton Process. Materials Science Forum. 1063:243-252. https://doi.org/10.4028/p-28e9b7 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.4028/p-28e9b7 | es_ES |
dc.description.upvformatpinicio | 243 | es_ES |
dc.description.upvformatpfin | 252 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 1063 | es_ES |
dc.identifier.eissn | 1662-9752 | es_ES |
dc.relation.pasarela | S\466576 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Consejo Nacional de Ciencia y Tecnología, México | es_ES |
dc.description.references | Information on https://www.plasticseurope.org/en/resources/publications/4312-plastics-facts-(2020). | es_ES |
dc.description.references | S. Chatterjee, S. Sharma, Microplastics in our oceans and marine health, F. Actions Sci. Rep. 19 (2019) 54–61. | es_ES |
dc.description.references | B. Worm, H. K. Lotze, I. Jubinville, C. Wilcox, J. Jambeck, Plastic as a Persistent Marine Pollutant, Annu. Rev. Environ. Resour. 42 (2017) 1–26. | es_ES |
dc.description.references | S. Wolff, J. Kerpen, J. Prediger, L. Barkmann, L. Müller, Determination of the microplastics emission in the effluent of a municipal waste water treatment plant using Raman microspectroscopy, Water Res. X, 2 (2019) 100014. | es_ES |
dc.description.references | H. S. Auta, C. U. Emenike, S. H. Fauziah, Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions, Environ. Int., 102 (2017) 165–176. | es_ES |
dc.description.references | H. S. Auta, C. U. Emenike, S. H. Fauziah, Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation, Environ. Pollut. 231 (2017) 1552–1559. | es_ES |
dc.description.references | K. Zhang, A. H. Hamidian, A. Tubić, Y. Zhang, J. K. H. Fang, C. Wu, P. K. S. Lam , Understanding plastic degradation and microplastic formation in the environment: A review, Environ. Pollut. 274 (2021) 116554. | es_ES |
dc.description.references | A. A. Horton, D. K. A. Barnes, Microplastic pollution in a rapidly changing world: Implications for remote and vulnerable marine ecosystems, Sci. Total Environ. 738 (2020) 140349. | es_ES |
dc.description.references | H. Zang, J. Zhou, M. R. Marshall, D. R. Chadwick, Y. Wen, D. L. Jones, Microplastics in the agroecosystem: Are they an emerging threat to the plant-soil system?, Soil Biol. Biochem. 148 (2020) 107926. | es_ES |
dc.description.references | M. Lehtiniemi, S. Hartikainen, P. Näkki, J. Engström-Öst, A. Koistinen, O. Setälä, Size matters more than shape: Ingestion of primary and secondary microplastics by small predators, Food Webs. 17 (2018) e00097. | es_ES |
dc.description.references | C. Wang, J. Zhao, B. Xing, Environmental source, fate, and toxicity of microplastics, J. Hazard. Mater. 407 (2020) 124357. | es_ES |
dc.description.references | Y. Xiang, L. Jiang, Y. Zhou, Z. Lou, D. Zhi, J. Yang, S. S. Lam, Microplastics and environmental pollutants: Key interaction and toxicology in aquatic and soil environments, J. Hazard. Mater. 422 (2021) 126843. | es_ES |
dc.description.references | Y. Deng, R. Zhao, Advanced Oxidation Processes (AOPs) in Wastewater Treatment, Curr. Pollut. Reports. 1 (2015) 167–176. | es_ES |
dc.description.references | A. Bakir, S. J. Rowland, R. C. Thompson, Transport of persistent organic pollutants by microplastics in estuarine conditions, Estuar. Coast. Shelf Sci. 140 (2014) 14–21. | es_ES |
dc.description.references | D. Feldman, Polyamide nanocomposites, J. Macromol. Sci. Part A Pure Appl. Chem. 54 (2017) 255–262. | es_ES |
dc.description.references | J. Friedrich, P. Zalar, M. Mohorčič, U. Klun, A. Kržan, Ability of fungi to degrade synthetic polymer nylon-6, Chemosphere. 67 (2007) 2089–(2095). | es_ES |
dc.description.references | N. Yamano, N. Kawasaki, S. Ida, A. Nakayama, Biodegradation of polyamide 4 in seawater, Polym. Degrad. Stab. 166 (2019) 230–236. | es_ES |
dc.description.references | L. Zhao, C. Su, W. Liu, R. Qin, L. Tang, X. Deng, S. Wu, M. Chen, Exposure to polyamide 66 microplastic leads to effects performance and microbial community structure of aerobic granular sludge, Ecotoxicol. Environ. Saf. 190 (2019) 110070. | es_ES |
dc.description.references | J. M. Lee, R. Busquets, I. C. Choi, S. H. Lee, J. K. Kim, L. C. Campos, Photocatalytic degradation of polyamide 66: Evaluating the feasibility of photocatalysis as a microfibre-targeting technology, Water (Switzerland). 12 (2020) 1–20. | es_ES |
dc.description.references | L. Sørensen, A. S. Groven, I. A. Hovsbakken, O. Del Puerto, D. F. Krause, A. Sarno, A. N. Booth, UV degradation of natural and synthetic microfibers causes fragmentation and release of polymer degradation products and chemical additives, Sci. Total Environ. 755 (2021) 143170. | es_ES |
dc.description.references | N. Vasanthan, D. R. Salem, Structure characterization of heat set and drawn polyamide 66 fibers by FTIR spectroscopy, Mater. Res. Innov. 4 (2001) 155–160. | es_ES |
dc.description.references | P. N. Thanki, R. P. Singh, Photo-oxidative degradation of nylon 66 under accelerated weathering, Polymer (Guildf). 39 (1998) 6363–6367. | es_ES |
dc.description.references | J. Charles, G. R. Ramkumaar, S. Azhagiri, S. Gunasekaran, FTIR and thermal studies on nylon-66 and 30% glass fibre reinforced nylon-66, E-Journal Chem. 6 (2009) 23–33. | es_ES |
dc.description.references | F. Navarro-Pardo, G. Martínez-Barrera, A. L. Martínez-Hernández, V. M. Castaño, J. L. Rivere-Armenta, F. Medellín-Rodríguez, C. Velasco-Santos, Effects on the thermo-mechanical and crystallinity properties of nylon 6,6 electrospun fibres reinforced with one dimensional (1D) and two dimensional (2D) carbon, Materials (Basel). 6 (2013) 3494–3513. | es_ES |
dc.description.references | A. M. Pannase, R. K. Singh, B. Ruj, P. Gupta, Decomposition of polyamide via slow pyrolysis: Effect of heating rate and operating temperature on product yield and composition, J. Anal. Appl. Pyrolysis. 151 (2020) 104886. | es_ES |
dc.description.references | L. A. Díaz-Alejo, E. C. Menchaca-Campos, J. Uruchurtu Chavarín, R. Sosa-Fonseca, M. A. García-Sánchez, Effects of the addition of ortho - And para NH2 substituted tetraphenylporphyrins on the structure of nylon 66, Int. J. Polym. Sci. 2013 (2013) 1-14. | es_ES |
dc.description.references | N. Vasanthan, Crystallinity determination of nylon 66 by density measurement and fourier transform infrared (FTIR) spectroscopy, J. Chem. Educ. 89 (2012) 387–390. | es_ES |
dc.description.references | G. Zhang, T. Watanabe, H. Yoshida, T. Kawai, Phase transition behavior of nylon-66, nylon-48, and blends, Polym. J. 35 (2003) 173–177. | es_ES |
dc.description.references | A. Dawelbeit, M. Yu, Transient Confinement of the Quaternary Tetramethylammonium Tetrafluoroborate Salt in Nylon 6 , 6 Fibres : Structural Developments for High Performance Properties, Materials, 14 (2021) 2938. | es_ES |
dc.description.references | Information on https://www.ncbi.nlm.nih.gov/books/NBK304366/. | es_ES |
dc.description.references | S. Dominguez, P. Ribao, M. J. Rivero, I. Ortiz, Influence of radiation and TiO2 concentration on the hydroxyl radicals generation in a photocatalytic LED reactor. Application to dodecylbenzenesulfonate degradation, Appl. Catal. B Environ. 178 (2014) 165–169. | es_ES |
dc.description.references | S. Yurdakal, C. Garlisi, L. Özcan, M. Bellardita, and G. Palmisano, (Photo)catalyst characterization techniques: Adsorption isotherms and BET, SEM, FTIR, UV-Vis, photoluminescence, and electrochemical characterizations, in: G. Marcì, L. Palmisano (Eds.), Heterogeneous Photocatalysis Relationships with Heterogeneous Catalysis and Perspectives, Elsevier, 2019, pp.87-152. | es_ES |