- -

Evaluation of phototoxicity induced by the anticancer drug rucaparib

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluation of phototoxicity induced by the anticancer drug rucaparib

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mateos-Pujante, Alejandro es_ES
dc.contributor.author Jiménez Molero, María Consuelo es_ES
dc.contributor.author Andreu, Inmaculada es_ES
dc.date.accessioned 2022-11-28T19:01:56Z
dc.date.available 2022-11-28T19:01:56Z
dc.date.issued 2022-03-02 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/190281
dc.description.abstract [EN] Rucaparib (RCP) is a potent selective inhibitor of both PARP-1 and PARP-2 enzymes that induces synthetic lethality in cancer cells. It is used for the treatment of breast and ovarian tumors harboring deleterious germline or somatic cancer susceptibility genes mutations. Although RCP has an indole chromophore in its structure, it displays a bathochromic shift of the absorption band towards the UVA region of sunlight, thus extending the active fraction of solar light able to produce photosensitivity reactions. In this context, it is highly interesting to study the photo(geno)toxicity disorders associated with this drug, bearing in mind that, for dermatologists it is crucial to understand the toxicity mechanism to improve clinical management. In the present work, RCP has shown to be potentially phototoxic, as observed in the neutral red uptake phototoxicity test. Moreover, this significant phototoxicity is attributed to both proteins and genomic DNA, as revealed in the protein photooxidation and comet assays. The results obtained are highly relevant concerning RCP photosafety and become clinically important in the context of identification of the cutaneous adverse events that can be associated with the targeted therapies. Interestingly, this is the first example of a PARP inhibitor able to induce photosensitized damage to biomolecules. es_ES
dc.description.sponsorship The present work was supported by: the Spanish Government (PID2019-105391GB-C22, PID2020-115010RB-100 and BEAGAL 18/00211) and Generalitat Valenciana (ACIF/2018/153 fellowship for A. M-P). We would also like to thank IIS La Fe Microscopy Unit for technical assistance. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Evaluation of phototoxicity induced by the anticancer drug rucaparib es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-022-07319-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105391GB-C22/ES/DESARROLLO DE NUEVOS SISTEMAS DE CONVERSION BIFOTONICA A MAYOR FRECUENCIA BASADOS EN ANIQUILACION TRIPLETE-TRIPLETE PARA FOTOCATALISIS REDOX CON LUZ VISIBLE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2018%2F153/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115010RB-I00/ES/FOTOCOMPORTAMIENTO DE LOS INHIBIDORES DE LA TIROSINA QUINASA: DE DISOLUCION A CELULAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MCIU//BEAGAL18%2F00211/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Mateos-Pujante, A.; Jiménez Molero, MC.; Andreu, I. (2022). Evaluation of phototoxicity induced by the anticancer drug rucaparib. Scientific Reports. 12(1):1-10. https://doi.org/10.1038/s41598-022-07319-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-022-07319-9 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 35236893 es_ES
dc.identifier.pmcid PMC8891269 es_ES
dc.relation.pasarela S\459865 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references Sonnenblick, A., de Azambuja, E., Azim, H. A. Jr. & Piccart, M. An update on PARP inhibitors-moving to the adjuvant setting. Nat. Rev. Clin. Oncol. 12, 27–41 (2015). es_ES
dc.description.references Michelena, J. et al. Analysis of PARP inhibitor toxicity by multidimensional fluorescence microscopy reveals mechanisms of sensitivity and resistance. Nat. Commun. 9, 2678 (2018). es_ES
dc.description.references Schreiber, V., Dantzer, F., Ame, J.-C. & de Murcia, G. Poly(ADP-ribose): Novel functions for an old molecule. Nat. Rev. Mol. Cell Biol. 7, 517–528 (2006). es_ES
dc.description.references Cetin, B., Wabl, C. A. & Gumusay, O. The DNA damaging revolution. Crit. Rev. Oncol. Hematol. 156, 103117 (2020). es_ES
dc.description.references Helleday, T., Lo, J., van Gent, D. C. & Engelward, B. P. DNA double-strand break repair: From mechanistic understanding to cancer treatment. DNA Repair 6, 923–935 (2007). es_ES
dc.description.references Weil, M. K. & Chen, A. P. PARP inhibitor treatment in ovarian and breast cancer. Curr. Probl. Cancer 35, 7–50 (2011). es_ES
dc.description.references Cortesi, L., Rugo, H. S. & Jackisch, C. An overview of PARP inhibitors for the treatment of breast cancer. Target Oncol. 16, 255–282 (2021). es_ES
dc.description.references Zheng, F. et al. Mechanism and current progress of poly ADP-ribose polymerase (PARP) inhibitors in the treatment of ovarian cancer. Biomed. Pharmacother. 123, 109661 (2020). es_ES
dc.description.references Drew, Y. et al. Phase 2 multicentre trial investigating intermittent and continuous dosing schedules of the poly(ADP-ribose) polymerase inhibitor rucaparib in germline BRCA mutation carriers with advanced ovarian and breast cancer. Br. J. Cancer 114, 723–730 (2016). es_ES
dc.description.references Mariappan, L., Jiang, X. Y., Jackson, J. & Drew, Y. Emerging treatment options for ovarian cancer: Focus on rucaparib. Int. J. Womens Health 9, 913–924 (2017). es_ES
dc.description.references O’Cearbhaill, R. E. Using PARP inhibitors in advanced ovarian cancer. Oncology (Williston Park) 32, 339–343 (2018). es_ES
dc.description.references Anscher, M. S. et al. FDA approval summary: Rucaparib for the treatment of patients with deleterious BRCA-nutated metastatic castrate-resistant prostate cancer. Oncologist 26, 139–146 (2021). es_ES
dc.description.references Ledermann, J. A. et al. Rucaparib for patients with platinum-sensitive, recurrent ovarian carcinoma (ARIEL3): Post-progression outcomes and updated safety results from a randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 21, 710–722 (2020). es_ES
dc.description.references Vayá, I. et al. Characterization of locally excited and charge-transfer states of the anticancer drug lapatinib by ultrafast spectroscopy and computational studies. Chem. Eur. J. 26, 15922–15930 (2020). es_ES
dc.description.references García-Lainez, G., Vayá, I., Marín, M. P., Miranda, M. A. & Andreu, I. In vitro assessment of the photo(geno)toxicity associated with lapatinib, a tyrosine kinase inhibitor. Arch. Toxicol. 95, 169–178 (2021). es_ES
dc.description.references Agúndez, J. A. G., García-Martín, E., García-Lainez, G., Miranda, M. A. & Andreu, I. Photomutagenicity of chlorpromazine and its N-demethylated metabolites assessed by NGS. Sci. Rep. 10, 6879 (2020). es_ES
dc.description.references Garcia-Lainez, G. et al. Photo(geno)toxicity changes associated with hydroxylation of the aromatic chromophores during diclofenac metabolism. Toxicol. Appl. Pharmacol. 341, 51–55 (2018). es_ES
dc.description.references Palumbo, F. et al. Enhanced photo(geno)toxicity of demethylated chlorpromazine metabolites. Toxicol. Appl. Pharmacol. 313, 131–137 (2016). es_ES
dc.description.references OECD. Test No. 432: In Vitro 3T3 NRU Phototoxicity Test, OECD Guidelines for the Testing of Chemicals, Section 4 (2019). es_ES
dc.description.references Svobodová, A. R., Ultichová, J. & Vostálová, J. Human keratinocyte cell line as a suitable model for in vitro phototoxicity testing. An. Bras. Dermatol. 94, 105–106 (2019). es_ES
dc.description.references Colombo, G. et al. A step-by-step protocol for assaying protein carbonylation in biological samples. J. Chromatogr. B. 1019, 178–190 (2016). es_ES
dc.description.references Strober, W. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. 111, A3.B.1-A3.B.3 (2015). es_ES
dc.description.references Møller, P. Assessment of reference values for DNA damage detected by the comet assay in human blood cell DNA. Mutat. Res. Rev. Mutat. 612, 84–104 (2006). es_ES
dc.description.references Melhuish, W. H. Quantum efficiences of fluorescence of organic substances: Effect of solvent and concentration of the fluorescent solute. J. Phys. Chem. 65, 229–235 (1961). es_ES
dc.description.references Kossatz, S. et al. Direct imaging of drug distribution and target engagement of the PARP inhibitor rucaparib. J. Nucl. Med. 59, 1316–1320 (2018). es_ES
dc.description.references Seto, Y., Inoue, R., Kato, M., Yamada, S. & Onoue, S. Photosafety assessments on pirfenidone: Photochemical, photobiological, and pharmacokinetic characterization. J. Photochem. Photobiol. B 120, 44–51 (2013). es_ES
dc.description.references Zeb, A. & Ullah, F. A simple spectrophotometric method for the determination of thiobarbituric acid reactive substances (TBARS) in fried fast foods. J. Anal. Methods Chem. 2016, 9412767 (2016). es_ES
dc.description.references Collins, A. R. The comet assay. Principles, applications, and limitations. Methods Mol. Biol. 203, 163–177 (2002). es_ES
dc.description.references Azqueta, A. & Collins, A. R. The essential comet assay: A comprehensive guide to measuring DNA damage and repair. Arch. Toxicol. 87, 949–968 (2013). es_ES
dc.description.references Glei, M., Schneider, T. & Schlörmann, W. Comet assay: An essential tool in toxicological research. Arch. Toxicol. 90, 2315–2336 (2016). es_ES
dc.description.references Galluzzi, L. et al. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486–541 (2018). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem