- -

Search for non-standard neutrino interactions with 10 years of ANTARES data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Search for non-standard neutrino interactions with 10 years of ANTARES data

Mostrar el registro completo del ítem

Albert, A.; Alves, S.; Andre, M.; Anghinolfi, M.; Anton, G.; Ardid Ramírez, M.; Ardid-Ramírez, JS.... (2022). Search for non-standard neutrino interactions with 10 years of ANTARES data. Journal of High Energy Physics (Online). 2022(7):1-22. https://doi.org/10.1007/JHEP07(2022)048

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/190404

Ficheros en el ítem

Metadatos del ítem

Título: Search for non-standard neutrino interactions with 10 years of ANTARES data
Autor: Albert, A. Alves, S. Andre, M. Anghinolfi, M. Anton, G. Ardid Ramírez, Miguel Ardid-Ramírez, Joan Salvador Aubert, J. J. Aublin, J. Baret, B. Basa, S. Belhorma, B. Bendahman, M. Benfenati, F. Bertin, V. Martínez Mora, Juan Antonio Poirè, Chiara
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia
Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
Fecha difusión:
Resumen:
[EN] Non-standard interactions of neutrinos arising in many theories beyond the Standard Model can significantly alter matter effects in atmospheric neutrino propagation through the Earth. In this paper, a search for ...[+]
Palabras clave: Neutrino Detectors and Telescopes (experiments)
Derechos de uso: Reconocimiento (by)
Fuente:
Journal of High Energy Physics (Online). (eissn: 1029-8479 )
DOI: 10.1007/JHEP07(2022)048
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/JHEP07(2022)048
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096663-A-C42/ES/CARACTERIZACION DEL FONDO ACUSTICO EN EL OBSERVATORIO SUBMARINO KM3NET/
...[+]
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096663-A-C42/ES/CARACTERIZACION DEL FONDO ACUSTICO EN EL OBSERVATORIO SUBMARINO KM3NET/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//CIDEGENT%2F2019%2F043//AYUDA CONTRATACION CIDEGENT INVESTIGADORES DE EXCELENCIA-ARDID RAMIREZ, JOAN/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096663-B-C41/ES/FISICA FUNDAMENTAL Y ASTRONOMIA MULTIMENSAJERO CON TELESCOPIOS DE NEUTRINOS/
info:eu-repo/grantAgreement/Junta de Andalucía//A-FQM-053-UGR18 /
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096663-B-C43/ES/FISICA FUNDAMENTAL, DETECCION ACUSTICA Y ASTRONOMIA MULTI-MENSAJERO CON TELESCOPIOS DE NEUTRINOS EN LA UPV/
info:eu-repo/grantAgreement/ANR//ANR-18-IDEX-0001 /
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096663-B-C44/ES/FISICA FUNDAMENTAL Y ASTRONOMIA MULTI-MENSAJERO CON TELESCOPIOS DE NEUTRINOS EN LA UGR/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2020%2F019/
info:eu-repo/grantAgreement/EC/H2020/101025085/EU
info:eu-repo/grantAgreement/GVA//GRISOLIA%2F2018%2F119/
info:eu-repo/grantAgreement/GVA//GRISOLIA%2F2021%2F192/
info:eu-repo/grantAgreement/GVA//CIDEGENT%2F2018%2F034 /
info:eu-repo/grantAgreement/GVA//CIDEGENT%2F2020%2F049 /
info:eu-repo/grantAgreement/GVA//CIDEGENT%2F2021%2F023/
info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//LCF%2FBQ%2FIN17%2F11620019 /
info:eu-repo/grantAgreement/LabEx UnivEarthS//ANR-10-LABX-0023 /
[-]
Agradecimientos:
The authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'energie atomique et aux energies alternatives (CEA), Commission Europeenne (FEDER ...[+]
Tipo: Artículo

References

SNO collaboration, Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [INSPIRE].

Super-Kamiokande collaboration, Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].

Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01 [INSPIRE]. [+]
SNO collaboration, Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [INSPIRE].

Super-Kamiokande collaboration, Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].

Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01 [INSPIRE].

P. Minkowski, μ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].

G. Costa and F. Zwirner, Baryon and Lepton Number Nonconservation, Riv. Nuovo Cim. 9N3 (1986) 1 [INSPIRE].

I. Bischer and W. Rodejohann, General neutrino interactions from an effective field theory perspective, Nucl. Phys. B 947 (2019) 114746 [arXiv:1905.08699] [INSPIRE].

T. Ohlsson, Status of non-standard neutrino interactions, Rept. Prog. Phys. 76 (2013) 044201 [arXiv:1209.2710] [INSPIRE].

O.G. Miranda and H. Nunokawa, Non standard neutrino interactions: current status and future prospects, New J. Phys. 17 (2015) 095002 [arXiv:1505.06254] [INSPIRE].

COHERENT collaboration, Observation of Coherent Elastic Neutrino-Nucleus Scattering, Science 357 (2017) 1123 [arXiv:1708.01294] [INSPIRE].

J. Kopp, M. Lindner, T. Ota and J. Sato, Non-standard neutrino interactions in reactor and superbeam experiments, Phys. Rev. D 77 (2008) 013007 [arXiv:0708.0152] [INSPIRE].

Y. Farzan and M. Tortola, Neutrino oscillations and Non-Standard Interactions, Front. in Phys. 6 (2018) 10 [arXiv:1710.09360] [INSPIRE].

P.S.B. Dev et al., Neutrino Non-Standard Interactions: A Status Report, SciPost Phys. Proc. 2 (2019) 001 [INSPIRE].

N. Fornengo, M. Maltoni, R. Tomas and J.W.F. Valle, Probing neutrino nonstandard interactions with atmospheric neutrino data, Phys. Rev. D 65 (2002) 013010 [hep-ph/0108043] [INSPIRE].

M.C. Gonzalez-Garcia and M. Maltoni, Atmospheric neutrino oscillations and new physics, Phys. Rev. D 70 (2004) 033010 [hep-ph/0404085] [INSPIRE].

Super-Kamiokande collaboration, Study of Non-Standard Neutrino Interactions with Atmospheric Neutrino Data in Super-Kamiokande I and II, Phys. Rev. D 84 (2011) 113008 [arXiv:1109.1889] [INSPIRE].

S. Fukasawa and O. Yasuda, Constraints on the Nonstandard Interaction in Propagation from Atmospheric Neutrinos, Adv. High Energy Phys. 2015 (2015) 820941 [arXiv:1503.08056] [INSPIRE].

IceCube collaboration, Search for Nonstandard Neutrino Interactions with IceCube DeepCore, Phys. Rev. D 97 (2018) 072009 [arXiv:1709.07079] [INSPIRE].

IceCube collaboration, All-flavor constraints on nonstandard neutrino interactions and generalized matter potential with three years of IceCube DeepCore data, Phys. Rev. D 104 (2021) 072006 [arXiv:2106.07755] [INSPIRE].

IceCube collaboration, Strong Constraints on Neutrino Nonstandard Interactions from TeV-Scale νu Disappearance at IceCube, Phys. Rev. Lett. 129 (2022) 011804 [arXiv:2201.03566] [INSPIRE].

A. Esmaili and A.Y. Smirnov, Probing Non-Standard Interaction of Neutrinos with IceCube and DeepCore, JHEP 06 (2013) 026 [arXiv:1304.1042] [INSPIRE].

J. Salvado, O. Mena, S. Palomares-Ruiz and N. Rius, Non-standard interactions with high-energy atmospheric neutrinos at IceCube, JHEP 01 (2017) 141 [arXiv:1609.03450] [INSPIRE].

S.V. Demidov, Bounds on non-standard interactions of neutrinos from IceCube DeepCore data, JHEP 03 (2020) 105 [arXiv:1912.04149] [INSPIRE].

ANTARES collaboration, ANTARES: the first undersea neutrino telescope, Nucl. Instrum. Meth. A 656 (2011) 11 [arXiv:1104.1607] [INSPIRE].

B. Pontecorvo, Neutrino Experiments and the Problem of Conservation of Leptonic Charge, Sov. Phys. JETP 26 (1968) 984 [INSPIRE].

Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].

KM3NeT collaboration, Determining the neutrino mass ordering and oscillation parameters with KM3NeT/ORCA, Eur. Phys. J. C 82 (2022) 26 [arXiv:2103.09885] [INSPIRE].

JUNO collaboration, JUNO Physics and Detector, arXiv:2104.02565 [INSPIRE].

KM3Net collaboration, Letter of intent for KM3NeT 2.0, J. Phys. G 43 (2016) 084001 [arXiv:1601.07459] [INSPIRE].

IceCube-PINGU collaboration, Letter of Intent: The Precision IceCube Next Generation Upgrade (PINGU), arXiv:1401.2046 [INSPIRE].

K. Abe et al., Letter of Intent: The Hyper-Kamiokande Experiment — Detector Design and Physics Potential —, arXiv:1109.3262 [INSPIRE].

Hyper-Kamiokande Proto-collaboration, Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande, PTEP 2015 (2015) 053C02 [arXiv:1502.05199] [INSPIRE].

A.V. Akindinov et al., Letter of Interest for a Neutrino Beam from Protvino to KM3NeT/ORCA, Eur. Phys. J. C 79 (2019) 758 [arXiv:1902.06083] [INSPIRE].

DUNE collaboration, Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics, arXiv:2002.03005 [INSPIRE].

L. Wolfenstein, Neutrino Oscillations in Matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].

ANTARES collaboration, Measuring the atmospheric neutrino oscillation parameters and constraining the 3+1 neutrino model with ten years of ANTARES data, JHEP 06 (2019) 113 [arXiv:1812.08650] [INSPIRE].

I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].

ANTARES collaboration, The ANTARES optical module, Nucl. Instrum. Meth. A 484 (2002) 369 [astro-ph/0112172] [INSPIRE].

ANTARES collaboration, The Positioning System of the ANTARES Neutrino Telescope, 2012 JINST 7 T08002 [arXiv:1202.3894] [INSPIRE].

ANTARES collaboration, Time Calibration of the ANTARES Neutrino Telescope, Astropart. Phys. 34 (2011) 539 [arXiv:1012.2204] [INSPIRE].

ANTARES collaboration, Monte Carlo simulations for the ANTARES underwater neutrino telescope, JCAP 01 (2021) 064 [arXiv:2010.06621] [INSPIRE].

I. Salvadori, Study of atmospheric neutrino oscillations with the ANTARES neutrino telescope, Ph.D. Thesis, Aix-Marseille University, Marseille, France (2018) [http://hal.in2p3.fr/tel-02265258/].

M. Honda, M. Sajjad Athar, T. Kajita, K. Kasahara and S. Midorikawa, Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model, Phys. Rev. D 92 (2015) 023004 [arXiv:1502.03916] [INSPIRE].

D. Bailey, Monte Carlo tools and analysis methods for understanding the ANTARES experiment and predicting its sensitivity to dark matter, Ph.D. Thesis, Oxford University, Oxford, U.K. (2002).

G. Carminati, A. Margiotta and M. Spurio, Atmospheric MUons from PArametric formulas: A Fast GEnerator for neutrino telescopes (MUPAGE), Comput. Phys. Commun. 179 (2008) 915 [arXiv:0802.0562] [INSPIRE].

GEANT4 collaboration, GEANT4 — a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].

ANTARES collaboration, Transmission of light in deep sea water at the site of the ANTARES Neutrino Telescope, Astropart. Phys. 23 (2005) 131 [astro-ph/0412126] [INSPIRE].

ANTARES collaboration, The Run-by-Run Monte Carlo simulation for the ANTARES experiment, EPJ Web Conf. 116 (2016) 02002 [INSPIRE].

ANTARES collaboration, Performance of the front-end electronics of the ANTARES neutrino telescope, Nucl. Instrum. Meth. A 622 (2010) 59 [arXiv:1007.2549] [INSPIRE].

ANTARES collaboration, A fast algorithm for muon track reconstruction and its application to the ANTARES neutrino telescope, Astropart. Phys. 34 (2011) 652 [arXiv:1105.4116] [INSPIRE].

E. Visser, Neutrinos from the Milky Way, Ph.D. Thesis, Universiteit Leiden, Leiden, The Netherlands (2015) [https://scholarlypublications.universiteitleiden.nl/handle/1887/32966].

J.P. Yañez and A. Kouchner, Measurement of atmospheric neutrino oscillations with very large volume neutrino telescopes, Adv. High Energy Phys. 2015 (2015) 271968 [arXiv:1509.08404] [INSPIRE].

J. Coelho, OscProb package, https://github.com/joaoabcoelho/OscProb.

A.M. Dziewonski and D.L. Anderson, Preliminary reference Earth model, Phys. Earth Planet. Inter. 25 (1981) 297.

G.D. Barr, T.K. Gaisser, S. Robbins and T. Stanev, Uncertainties in Atmospheric Neutrino Fluxes, Phys. Rev. D 74 (2006) 094009 [astro-ph/0611266] [INSPIRE].

IceCube collaboration, Measurement of Atmospheric Neutrino Oscillations at 6–56 GeV with IceCube DeepCore, Phys. Rev. Lett. 120 (2018) 071801 [arXiv:1707.07081] [INSPIRE].

ANTARES collaboration, Long-term monitoring of the ANTARES optical module efficiencies using 40K decays in sea water, Eur. Phys. J. C 78 (2018) 669 [arXiv:1805.08675] [INSPIRE].

ANTARES and KM3NeT collaborations, gSeaGen: a GENIE-based code for neutrino telescopes, EPJ Web Conf. 116 (2016) 08001 [arXiv:1602.00501] [INSPIRE].

C. Andreopoulos et al., The GENIE Neutrino Monte Carlo Generator: Physics and User Manual, arXiv:1510.05494 [INSPIRE].

I. Mocioiu and W. Wright, Non-standard neutrino interactions in the mu-tau sector, Nucl. Phys. B 893 (2015) 376 [arXiv:1410.6193] [INSPIRE].

S.S. Wilks, The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses, Annals Math. Statist. 9 (1938) 60 [INSPIRE].

C. Biggio, M. Blennow and E. Fernandez-Martinez, General bounds on non-standard neutrino interactions, JHEP 08 (2009) 090 [arXiv:0907.0097] [INSPIRE].

MINOS collaboration, Search for flavor-changing non-standard neutrino interactions by MINOS, Phys. Rev. D 88 (2013) 072011 [arXiv:1303.5314] [INSPIRE].

P.B. Denton, J. Gehrlein and R. Pestes, CP-Violating Neutrino Nonstandard Interactions in Long-Baseline-Accelerator Data, Phys. Rev. Lett. 126 (2021) 051801 [arXiv:2008.01110] [INSPIRE].

P.B. Denton, Y. Farzan and I.M. Shoemaker, Testing large non-standard neutrino interactions with arbitrary mediator mass after COHERENT data, JHEP 07 (2018) 037 [arXiv:1804.03660] [INSPIRE].

C. Giunti, General COHERENT constraints on neutrino nonstandard interactions, Phys. Rev. D 101 (2020) 035039 [arXiv:1909.00466] [INSPIRE].

I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and J. Salvado, Updated constraints on non-standard interactions from global analysis of oscillation data, JHEP 08 (2018) 180 [Addendum ibid. 12 (2020) 152] [arXiv:1805.04530] [INSPIRE].

I. Esteban, M.C. Gonzalez-Garcia and M. Maltoni, On the Determination of Leptonic CP-violation and Neutrino Mass Ordering in Presence of Non-Standard Interactions: Present Status, JHEP 06 (2019) 055 [arXiv:1905.05203] [INSPIRE].

P. Coloma, I. Esteban, M.C. Gonzalez-Garcia and M. Maltoni, Improved global fit to Non-Standard neutrino Interactions using COHERENT energy and timing data, JHEP 02 (2020) 023 [Addendum ibid. 12 (2020) 071] [arXiv:1911.09109] [INSPIRE].

KM3NeT collaboration, Sensitivity to Non-Standard Interactions (NSI) with KM3NeT-ORCA, PoS ICRC2019 (2020) 931 [INSPIRE].

KM3NeT collaboration, Neutrino Oscillations and Non-standard Interactions with KM3NeT-ORCA, in Prospects in Neutrino Physics, (2020) [arXiv:2004.05004] [INSPIRE].

KM3NeT collaboration, KM3NeT/ORCA: status and perspectives for neutrino oscillation and mass hierarchy measurements, PoS ICHEP2020 (2021) 149 [arXiv:2107.10593] [INSPIRE].

P. Fermani and I. Di Palma, Status and first results from the ARCA and ORCA lines of the KM3NeT experiment, EPJ Web Conf. 209 (2019) 01006 [INSPIRE].

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem