Mostrar el registro sencillo del ítem
dc.contributor.author | Prats-Climent, Joan | es_ES |
dc.contributor.author | Gandia-Ferrero, Maria Teresa | es_ES |
dc.contributor.author | Torres-Espallardo, Irene | es_ES |
dc.contributor.author | Álvarez-Sanchez, Lourdes | es_ES |
dc.contributor.author | Martinez-Sanchis, Begoña | es_ES |
dc.contributor.author | Cháfer-Pericás, Consuelo | es_ES |
dc.contributor.author | Gómez-Rico, Ignacio | es_ES |
dc.contributor.author | Cerdá-Alberich, Leonor | es_ES |
dc.contributor.author | Aparici-Robles, Fernando | es_ES |
dc.contributor.author | Baquero-Toledo, Miquel | es_ES |
dc.contributor.author | Rodríguez-Álvarez, M. J. | es_ES |
dc.contributor.author | Marti-Bonmati, Luis | es_ES |
dc.date.accessioned | 2022-11-30T19:01:45Z | |
dc.date.available | 2022-11-30T19:01:45Z | |
dc.date.issued | 2022-06-17 | es_ES |
dc.identifier.issn | 0148-5598 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/190413 | |
dc.description.abstract | [EN] The purpose of this project is to develop and validate a Deep Learning (DL) FDG PET imaging algorithm able to identify patients with any neurodegenerative diseases (Alzheimer's Disease (AD), Frontotemporal Degeneration (FTD) or Dementia with Lewy Bodies (DLB)) among patients with Mild Cognitive Impairment (MCI). A 3D Convolutional neural network was trained using images from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The ADNI dataset used for the model training and testing consisted of 822 subjects (472 AD and 350 MCI). The validation was performed on an independent dataset from La Fe University and Polytechnic Hospital. This dataset contained 90 subjects with MCI, 71 of them developed a neurodegenerative disease (64 AD, 4 FTD and 3 DLB) while 19 did not associate any neurodegenerative disease. The model had 79% accuracy, 88% sensitivity and 71% specificity in the identification of patients with neurodegenerative diseases tested on the 10% ADNI dataset, achieving an area under the receiver operating characteristic curve (AUC) of 0.90. On the external validation, the model preserved 80% balanced accuracy, 75% sensitivity, 84% specificity and 0.86 AUC. This binary classifier model based on FDG PET images allows the early prediction of neurodegenerative diseases in MCI patients in standard clinical settings with an overall 80% classification balanced accuracy. | es_ES |
dc.description.sponsorship | This work was financially supported by INBIO 2019 (DEEPBRAIN), INNVA1/2020/83(DEEPPET) funded by Generalitat Valenciana, and PID2019-107790RB-C22 funded by MCIN/AEI/10.13039/501100011033/. Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org).The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of Medical Systems | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | PET | es_ES |
dc.subject | Artificial intelligence | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Alzheimer, Mild cognitive impairment | es_ES |
dc.subject | Neurodegenerative diseases | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Artificial Intelligence on FDG PET Images Identifies Mild Cognitive Impairment Patients with Neurodegenerative Disease | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10916-022-01836-w | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107790RB-C22/ES/DESARROLLO DEL SOFTWARE PARA UN SISTEMA PET DE CRISTAL CONTINUO APLICADO AL CANCER DE MAMA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AGENCIA VALENCIANA DE LA INNOVACION//INNVA1%2F2020%2F83//VALORACION Y TRANSFERENCIA DE RESULTADOS DE DEEP-LEARNING DE ANALISIS DE IMAGENES NEUROLOGICAS DE TOMOGRAFIA POR EMISION DE POSITRONES (PET)./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//U01 AG024904/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DOD//W81XWH-12-2-0012/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular | es_ES |
dc.description.bibliographicCitation | Prats-Climent, J.; Gandia-Ferrero, MT.; Torres-Espallardo, I.; Álvarez-Sanchez, L.; Martinez-Sanchis, B.; Cháfer-Pericás, C.; Gómez-Rico, I.... (2022). Artificial Intelligence on FDG PET Images Identifies Mild Cognitive Impairment Patients with Neurodegenerative Disease. Journal of Medical Systems. 46(8):1-13. https://doi.org/10.1007/s10916-022-01836-w | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10916-022-01836-w | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 46 | es_ES |
dc.description.issue | 8 | es_ES |
dc.identifier.pmid | 35713815 | es_ES |
dc.relation.pasarela | S\467354 | es_ES |
dc.contributor.funder | U.S. Department of Defense | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | National Institute on Aging, EEUU | es_ES |
dc.contributor.funder | AGENCIA VALENCIANA DE LA INNOVACION | es_ES |
dc.contributor.funder | National Institutes of Health, EEUU | es_ES |
dc.contributor.funder | National Institute of Biomedical Imaging and Bioengineering, EEUU | es_ES |
dc.description.references | Karagiannidou, M. P., Comas-Herrera, A., Knapp, M., Guerchet, M. (2016) World Alzheimer Report 2016 Improving healthcare for people living with dementia. Coverage, Quality and costs now and in the future. Alzheimer’s Disease International (ADI). https://www.alzint.org/u/WorldAlzheimerReport2016.pdf Accessed 30 May 2022. | es_ES |
dc.description.references | Galende, A. V., Ortiz, M. E., Velasco, S. L., Luque, M. L., de Miguel, C. LDS., Prieto, C., Jurczynska, CP. (2021) Report by the Spanish Foundation of the Brain on the social impact of Alzheimer disease and other types of dementia. Neurologia 36. | es_ES |
dc.description.references | Morris, JC., Storandt, M., Miller, JP., McKeel, DW., Price, JL., Rubin, EH., Berg, L. (2001) Mild cognitive impairment represents early-stage Alzheimer disease. Archives of Neurology. | es_ES |
dc.description.references | Hughes, C. P., Berg, L., Danziger, W. L., Coben, L. A., Martin, R. L. (1982) A new clinical scale for the staging of dementia. British Journal of Psychiatry. | es_ES |
dc.description.references | Gupta, Y., Lama, R. K., Kwon, GR. (2019) Prediction and Classification of Alzheimer’s Disease Based on Combined Features From Apolipoprotein-E Genotype, Cerebrospinal Fluid, MR, and FDG-PET Imaging Biomarkers. Frontiers in Computational Neuroscience 13. | es_ES |
dc.description.references | Gamez-Cenzano, C., Robles-Barba, J., Rodriguez-Bel, J. L., Gascon-Bayarri, J., Cortes-Romera, M., Sabate-Llobera, A., Gracia-Sanchez, LM., Romero-Zayas, I., Rocaengronyat, M., Vercher-Conejero, J., Majos-Torro, C., Soriano-Mas, C., Aguilera Grijalvo, C. (2015) Impact of PET brain imaging using F18-FDG and F18-FLORBETAPIR in patients with cognitive impairment. European Journal of Nuclear Medicine and Molecular Imaging 42. | es_ES |
dc.description.references | Nobili, F., Arbizu, J., Bouwman, F., Drzezga, A., Agosta, F., Nestor, P., Walker, Z., Boccardi, M. (2018) European Association of Nuclear Medicine and European Academy of Neurology recommendations for the use of brain 18 F-fluorodeoxyglucose positron emission tomography in neurodegenerative cognitive impairment and dementia: Delphi consensus. Eur J Neurol. | es_ES |
dc.description.references | Dave, A., Hansen, N., Downey, R., Johnson, C. (2020) FDG-PET Imaging of Dementia and Neurodegenerative Disease. Seminars in Ultrasound, CT and MRI 41. | es_ES |
dc.description.references | Silverman, DHS., Mosconi, L., Ercoli, L., Chen, W., Small, GW. (2008) PET Scans Obtained for Evaluation of Cognitive Dysfunction. Seminars in nuclear medicine 38. | es_ES |
dc.description.references | Marcus, C., Mena, E., Subramaniam, RM. (2014) Brain PET in the diagnosis of Alzheimer's disease. Clinical Nuclear Medicine 39. | es_ES |
dc.description.references | Gámez-Cenzano, C., Rodríguez-Bel, L., Gascón-Bayarri, J., Reñé-Ramírez, R., Campdelacreu-Fumado, J., Turón-Sans, J., Soriano-Mas, C., Vercher-Conejero, J., Gràcia-Sánchez, L., Llinares-Tello, E., Pons-Escoda, A., C., MT. (2016) Role of 18F-FDG-PET and amyloid-PET imaging on patient management in mild cognitive impairment or dementia. European Journal of Nuclear Medicine and Molecular Imaging 43. | es_ES |
dc.description.references | Varrone, L. A., Asenbaum, S., Vander-Borght, T., Booij, J., Nobili, F., Någren, K., Darcourt, J., Kapucu, O. L., Tatsch, K., Bartenstein, P., Van, K. (2009) EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. European Journal of Nuclear Medicine and Molecular Imaging 36. | es_ES |
dc.description.references | Della Rosa, PA., Cerami, C., Gallivanone, F., Prestia, A., Caroli, A., Castiglioni, I., Gilardi, M. C., Frisoni, G., Friston, K., Ashburner, J., Perani, D. (October 2014) A standardized [18F]-FDG-PET template for spatial normalization in statistical parametric mapping of dementia. Neuroinformatics 12. | es_ES |
dc.description.references | Friston, K., Ashburner, J., Kiebel, S., Nichols, T., Penny, W. (2007) Statistical Parametric Mapping. Academic Press London. | es_ES |
dc.description.references | Simonyan, K., A., Z. (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. | es_ES |
dc.description.references | Kingma, D. P., Ba, J. (2014) Adam: A Method for Stochastic Optimization.. | es_ES |
dc.description.references | Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. (2014) Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research 15. | es_ES |
dc.description.references | Chollet, Francois, others (Accessed 2005) Keras. Available at: https://github.com/fchollet/keras | es_ES |
dc.description.references | (Accessed ADNI) Alzheimer’s Disease Neuroimaging Initiative. Available at: http://adni.loni.usc.edu/ | es_ES |
dc.description.references | Simonyan, K., Vedaldi, A., Zisserman, A. (2014) Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. CoRR. | es_ES |
dc.description.references | Smilkov, R., Thorat, N., Kim, B., Viégas, F., Wattenberg, M. (2017) Smoothgrad: removing noise by adding noise. Workshop on Visualization for Deep Learning, ICML. | es_ES |
dc.description.references | Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D. (2017) Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization.. | es_ES |
dc.description.references | Yang, J., Hu, C., Guo, N., Dutta, J., Vaina, LM., Johnson, KA., Sepulcre, J., El-Fakhri, G., Li, Q. (2017) Partial volume correction for PET quantification and its impact on brain network in Alzheimer’s disease. Scientific Reports 7. | es_ES |
dc.description.references | Ding, Y., Sohn, J., Kawczynski, M., Trivedi, H., Harnish, R., Jenkins, N., Lituiev, D., Copeland, T., Aboian, M., Mari Aparici, C., Behr, S., Flavell, R., Huang, S., Zalocusky, K., Nardo, L., Seo, Y., Hawkins, R. (2018) A deep learning model to predict a diagnosis of Alzheimer disease by using 18 F-FDG PET of the brain. Radiology 290. | es_ES |
dc.description.references | Johnson, K. A., Fox, N. C., Sperling, R. A., Klunk, W. E. (2012) Brain imaging in Alzheimer disease. Cold Spring Harbor 2. | es_ES |
dc.description.references | Ghorbani, A., Abid, A., Zou, J. (2019) Interpretation of Neural Networks Is Fragile. Proceedings of the AAAI Conference on Artificial Intelligence 33. | es_ES |
dc.description.references | Feng, C., Elazab, A., Yang, P., Wang, T., Zhou, F., Hu, H., Xiao, X., Lei, B. (2019) Deep Learning Framework for Alzheimer’s Disease Diagnosis via 3D-CNN and FSBi-LSTM. IEEE Access 7. | es_ES |
dc.description.references | Etminani, K., Soliman, A., Davidsson, A., Chang, JR., Martínez-Sanchis, B., Byttner, S., Camacho, V., Bauckneht, M., Stegeran, R., Ressner, M., Agudelo-Cifuentes, M. (2022) A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PET. European Journal of Nuclear Medicine and Molecular Imaging 49. | es_ES |
dc.description.references | Liu, M., Cheng, D., Wang, K., Wang, Y. (2018) Multi-Modality Cascaded Convolutional Neural Networks for Alzheimer’s Disease Diagnosis. Neuroinformatics 16. | es_ES |
dc.description.references | Duc, NT., Ryu, S., Qureshi, MNI., Choi, M., Lee, KH., Lee, B. (2020) 3D-Deep Learning Based Automatic Diagnosis of Alzheimer’s Disease with Joint MMSE Prediction Using Resting-State fMRI. Neuroinformatics 18. | es_ES |
dc.description.references | Manhua, L., Cheng, D., Weiwu, Y. (2018) Classification of Alzheimer’s Disease by Combination of Convolutional and Recurrent Neural Networks Using FDG-PET Images. Frontiers in Neuroinformatics 12. | es_ES |