- -

Artificial Intelligence on FDG PET Images Identifies Mild Cognitive Impairment Patients with Neurodegenerative Disease

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Artificial Intelligence on FDG PET Images Identifies Mild Cognitive Impairment Patients with Neurodegenerative Disease

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Prats-Climent, Joan es_ES
dc.contributor.author Gandia-Ferrero, Maria Teresa es_ES
dc.contributor.author Torres-Espallardo, Irene es_ES
dc.contributor.author Álvarez-Sanchez, Lourdes es_ES
dc.contributor.author Martinez-Sanchis, Begoña es_ES
dc.contributor.author Cháfer-Pericás, Consuelo es_ES
dc.contributor.author Gómez-Rico, Ignacio es_ES
dc.contributor.author Cerdá-Alberich, Leonor es_ES
dc.contributor.author Aparici-Robles, Fernando es_ES
dc.contributor.author Baquero-Toledo, Miquel es_ES
dc.contributor.author Rodríguez-Álvarez, M. J. es_ES
dc.contributor.author Marti-Bonmati, Luis es_ES
dc.date.accessioned 2022-11-30T19:01:45Z
dc.date.available 2022-11-30T19:01:45Z
dc.date.issued 2022-06-17 es_ES
dc.identifier.issn 0148-5598 es_ES
dc.identifier.uri http://hdl.handle.net/10251/190413
dc.description.abstract [EN] The purpose of this project is to develop and validate a Deep Learning (DL) FDG PET imaging algorithm able to identify patients with any neurodegenerative diseases (Alzheimer's Disease (AD), Frontotemporal Degeneration (FTD) or Dementia with Lewy Bodies (DLB)) among patients with Mild Cognitive Impairment (MCI). A 3D Convolutional neural network was trained using images from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The ADNI dataset used for the model training and testing consisted of 822 subjects (472 AD and 350 MCI). The validation was performed on an independent dataset from La Fe University and Polytechnic Hospital. This dataset contained 90 subjects with MCI, 71 of them developed a neurodegenerative disease (64 AD, 4 FTD and 3 DLB) while 19 did not associate any neurodegenerative disease. The model had 79% accuracy, 88% sensitivity and 71% specificity in the identification of patients with neurodegenerative diseases tested on the 10% ADNI dataset, achieving an area under the receiver operating characteristic curve (AUC) of 0.90. On the external validation, the model preserved 80% balanced accuracy, 75% sensitivity, 84% specificity and 0.86 AUC. This binary classifier model based on FDG PET images allows the early prediction of neurodegenerative diseases in MCI patients in standard clinical settings with an overall 80% classification balanced accuracy. es_ES
dc.description.sponsorship This work was financially supported by INBIO 2019 (DEEPBRAIN), INNVA1/2020/83(DEEPPET) funded by Generalitat Valenciana, and PID2019-107790RB-C22 funded by MCIN/AEI/10.13039/501100011033/. Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org).The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Medical Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject PET es_ES
dc.subject Artificial intelligence es_ES
dc.subject Deep learning es_ES
dc.subject Alzheimer, Mild cognitive impairment es_ES
dc.subject Neurodegenerative diseases es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Artificial Intelligence on FDG PET Images Identifies Mild Cognitive Impairment Patients with Neurodegenerative Disease es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10916-022-01836-w es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107790RB-C22/ES/DESARROLLO DEL SOFTWARE PARA UN SISTEMA PET DE CRISTAL CONTINUO APLICADO AL CANCER DE MAMA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA VALENCIANA DE LA INNOVACION//INNVA1%2F2020%2F83//VALORACION Y TRANSFERENCIA DE RESULTADOS DE DEEP-LEARNING DE ANALISIS DE IMAGENES NEUROLOGICAS DE TOMOGRAFIA POR EMISION DE POSITRONES (PET)./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//U01 AG024904/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOD//W81XWH-12-2-0012/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.description.bibliographicCitation Prats-Climent, J.; Gandia-Ferrero, MT.; Torres-Espallardo, I.; Álvarez-Sanchez, L.; Martinez-Sanchis, B.; Cháfer-Pericás, C.; Gómez-Rico, I.... (2022). Artificial Intelligence on FDG PET Images Identifies Mild Cognitive Impairment Patients with Neurodegenerative Disease. Journal of Medical Systems. 46(8):1-13. https://doi.org/10.1007/s10916-022-01836-w es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10916-022-01836-w es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 46 es_ES
dc.description.issue 8 es_ES
dc.identifier.pmid 35713815 es_ES
dc.relation.pasarela S\467354 es_ES
dc.contributor.funder U.S. Department of Defense es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder National Institute on Aging, EEUU es_ES
dc.contributor.funder AGENCIA VALENCIANA DE LA INNOVACION es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.contributor.funder National Institute of Biomedical Imaging and Bioengineering, EEUU es_ES
dc.description.references Karagiannidou, M. P., Comas-Herrera, A., Knapp, M., Guerchet, M. (2016) World Alzheimer Report 2016 Improving healthcare for people living with dementia. Coverage, Quality and costs now and in the future. Alzheimer’s Disease International (ADI). https://www.alzint.org/u/WorldAlzheimerReport2016.pdf Accessed 30 May 2022. es_ES
dc.description.references Galende, A. V., Ortiz, M. E., Velasco, S. L., Luque, M. L., de Miguel, C. LDS., Prieto, C., Jurczynska, CP. (2021) Report by the Spanish Foundation of the Brain on the social impact of Alzheimer disease and other types of dementia. Neurologia 36. es_ES
dc.description.references Morris, JC., Storandt, M., Miller, JP., McKeel, DW., Price, JL., Rubin, EH., Berg, L. (2001) Mild cognitive impairment represents early-stage Alzheimer disease. Archives of Neurology. es_ES
dc.description.references Hughes, C. P., Berg, L., Danziger, W. L., Coben, L. A., Martin, R. L. (1982) A new clinical scale for the staging of dementia. British Journal of Psychiatry. es_ES
dc.description.references Gupta, Y., Lama, R. K., Kwon, GR. (2019) Prediction and Classification of Alzheimer’s Disease Based on Combined Features From Apolipoprotein-E Genotype, Cerebrospinal Fluid, MR, and FDG-PET Imaging Biomarkers. Frontiers in Computational Neuroscience 13. es_ES
dc.description.references Gamez-Cenzano, C., Robles-Barba, J., Rodriguez-Bel, J. L., Gascon-Bayarri, J., Cortes-Romera, M., Sabate-Llobera, A., Gracia-Sanchez, LM., Romero-Zayas, I., Rocaengronyat, M., Vercher-Conejero, J., Majos-Torro, C., Soriano-Mas, C., Aguilera Grijalvo, C. (2015) Impact of PET brain imaging using F18-FDG and F18-FLORBETAPIR in patients with cognitive impairment. European Journal of Nuclear Medicine and Molecular Imaging 42. es_ES
dc.description.references Nobili, F., Arbizu, J., Bouwman, F., Drzezga, A., Agosta, F., Nestor, P., Walker, Z., Boccardi, M. (2018) European Association of Nuclear Medicine and European Academy of Neurology recommendations for the use of brain 18 F-fluorodeoxyglucose positron emission tomography in neurodegenerative cognitive impairment and dementia: Delphi consensus. Eur J Neurol. es_ES
dc.description.references Dave, A., Hansen, N., Downey, R., Johnson, C. (2020) FDG-PET Imaging of Dementia and Neurodegenerative Disease. Seminars in Ultrasound, CT and MRI 41. es_ES
dc.description.references Silverman, DHS., Mosconi, L., Ercoli, L., Chen, W., Small, GW. (2008) PET Scans Obtained for Evaluation of Cognitive Dysfunction. Seminars in nuclear medicine 38. es_ES
dc.description.references Marcus, C., Mena, E., Subramaniam, RM. (2014) Brain PET in the diagnosis of Alzheimer's disease. Clinical Nuclear Medicine 39. es_ES
dc.description.references Gámez-Cenzano, C., Rodríguez-Bel, L., Gascón-Bayarri, J., Reñé-Ramírez, R., Campdelacreu-Fumado, J., Turón-Sans, J., Soriano-Mas, C., Vercher-Conejero, J., Gràcia-Sánchez, L., Llinares-Tello, E., Pons-Escoda, A., C., MT. (2016) Role of 18F-FDG-PET and amyloid-PET imaging on patient management in mild cognitive impairment or dementia. European Journal of Nuclear Medicine and Molecular Imaging 43. es_ES
dc.description.references Varrone, L. A., Asenbaum, S., Vander-Borght, T., Booij, J., Nobili, F., Någren, K., Darcourt, J., Kapucu, O. L., Tatsch, K., Bartenstein, P., Van, K. (2009) EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. European Journal of Nuclear Medicine and Molecular Imaging 36. es_ES
dc.description.references Della Rosa, PA., Cerami, C., Gallivanone, F., Prestia, A., Caroli, A., Castiglioni, I., Gilardi, M. C., Frisoni, G., Friston, K., Ashburner, J., Perani, D. (October 2014) A standardized [18F]-FDG-PET template for spatial normalization in statistical parametric mapping of dementia. Neuroinformatics 12. es_ES
dc.description.references Friston, K., Ashburner, J., Kiebel, S., Nichols, T., Penny, W. (2007) Statistical Parametric Mapping. Academic Press London. es_ES
dc.description.references Simonyan, K., A., Z. (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. es_ES
dc.description.references Kingma, D. P., Ba, J. (2014) Adam: A Method for Stochastic Optimization.. es_ES
dc.description.references Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. (2014) Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research 15. es_ES
dc.description.references Chollet, Francois, others (Accessed 2005) Keras. Available at: https://github.com/fchollet/keras es_ES
dc.description.references (Accessed ADNI) Alzheimer’s Disease Neuroimaging Initiative. Available at: http://adni.loni.usc.edu/ es_ES
dc.description.references Simonyan, K., Vedaldi, A., Zisserman, A. (2014) Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. CoRR. es_ES
dc.description.references Smilkov, R., Thorat, N., Kim, B., Viégas, F., Wattenberg, M. (2017) Smoothgrad: removing noise by adding noise. Workshop on Visualization for Deep Learning, ICML. es_ES
dc.description.references Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D. (2017) Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization.. es_ES
dc.description.references Yang, J., Hu, C., Guo, N., Dutta, J., Vaina, LM., Johnson, KA., Sepulcre, J., El-Fakhri, G., Li, Q. (2017) Partial volume correction for PET quantification and its impact on brain network in Alzheimer’s disease. Scientific Reports 7. es_ES
dc.description.references Ding, Y., Sohn, J., Kawczynski, M., Trivedi, H., Harnish, R., Jenkins, N., Lituiev, D., Copeland, T., Aboian, M., Mari Aparici, C., Behr, S., Flavell, R., Huang, S., Zalocusky, K., Nardo, L., Seo, Y., Hawkins, R. (2018) A deep learning model to predict a diagnosis of Alzheimer disease by using 18 F-FDG PET of the brain. Radiology 290. es_ES
dc.description.references Johnson, K. A., Fox, N. C., Sperling, R. A., Klunk, W. E. (2012) Brain imaging in Alzheimer disease. Cold Spring Harbor 2. es_ES
dc.description.references Ghorbani, A., Abid, A., Zou, J. (2019) Interpretation of Neural Networks Is Fragile. Proceedings of the AAAI Conference on Artificial Intelligence 33. es_ES
dc.description.references Feng, C., Elazab, A., Yang, P., Wang, T., Zhou, F., Hu, H., Xiao, X., Lei, B. (2019) Deep Learning Framework for Alzheimer’s Disease Diagnosis via 3D-CNN and FSBi-LSTM. IEEE Access 7. es_ES
dc.description.references Etminani, K., Soliman, A., Davidsson, A., Chang, JR., Martínez-Sanchis, B., Byttner, S., Camacho, V., Bauckneht, M., Stegeran, R., Ressner, M., Agudelo-Cifuentes, M. (2022) A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PET. European Journal of Nuclear Medicine and Molecular Imaging 49. es_ES
dc.description.references Liu, M., Cheng, D., Wang, K., Wang, Y. (2018) Multi-Modality Cascaded Convolutional Neural Networks for Alzheimer’s Disease Diagnosis. Neuroinformatics 16. es_ES
dc.description.references Duc, NT., Ryu, S., Qureshi, MNI., Choi, M., Lee, KH., Lee, B. (2020) 3D-Deep Learning Based Automatic Diagnosis of Alzheimer’s Disease with Joint MMSE Prediction Using Resting-State fMRI. Neuroinformatics 18. es_ES
dc.description.references Manhua, L., Cheng, D., Weiwu, Y. (2018) Classification of Alzheimer’s Disease by Combination of Convolutional and Recurrent Neural Networks Using FDG-PET Images. Frontiers in Neuroinformatics 12. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem