- -

Modeling and "smart" prototyping human-in-the-loop interactions for AmI environments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modeling and "smart" prototyping human-in-the-loop interactions for AmI environments

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gil, Miriam es_ES
dc.contributor.author Albert Albiol, Manuela es_ES
dc.contributor.author Fons Cors, Josep es_ES
dc.contributor.author Pelechano Ferragud, Vicente es_ES
dc.date.accessioned 2022-12-07T19:00:08Z
dc.date.available 2022-12-07T19:00:08Z
dc.date.issued 2022-12 es_ES
dc.identifier.issn 1617-4909 es_ES
dc.identifier.uri http://hdl.handle.net/10251/190525
dc.description.abstract [EN] Autonomous capabilities are required in AmI environments in order to adapt systems to new environmental conditions and situations. However, keeping the human in the loop and in control of such systems is still necessary because of the diversity of systems, domains, environments, context situations, and social and legal constraints, which makes full autonomy a utopia within the short or medium term. Human-system integration introduces an important number of challenges and problems that have to be solved. On the one hand, humans should interact with systems even in those situations where their attentional, cognitive, and physical resources are limited in order to perform the interaction. On the other hand, systems must avoid overwhelming the user with unnecessary actions. Therefore, appropriate user-centered methods for AmI development should be used to help designers analyze and design human-in-the-loop interactions in AmI environments. This paper presents a user-centered design method that defines a process with a set of tools and techniques that supports the process steps in order to systematically design, prototype, and validate human-in-the-loop (HiL) solutions. The process starts with the definition of the HiL design, which defines how the system cooperates with the human. This HiL design is built using a conceptual framework that focuses on achieving human-system interactions that get human attention and avoid obtrusiveness. Then, we provide a software infrastructure to generate a prototype based on the HiL design and validate it by having end-users use a web simulator. The feedback data generated during the prototype user validation is gathered and used by a machine learning tool that infers the user's needs and preferences. Finally, these inferences are used to automatically enhance the human-in-the-loop designs and prototypes. We have validated the proposed method through a twofold perspective: an experiment to analyze the perception of interaction designers regarding their acceptance of the design method and another experiment to evaluate the usefulness of the "smart" prototyping technique. The results obtained point out the acceptability of the proposed method by designers and the useful adaptations provided by the "smart" prototyping technique to achieve a HiL design that adapts well to users' preferences and needs. es_ES
dc.description.sponsorship This work has been developed with the financial support of the Spanish State Research Agency and the Generalitat Valenciana under the projects TIN2017-84094-R and AICO/2019/009 and co-financed with ERDF. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Personal and Ubiquitous Computing es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Human in the loop es_ES
dc.subject Human-system interactions es_ES
dc.subject Context-aware interactions es_ES
dc.subject Human-centered design es_ES
dc.subject Smart prototyping es_ES
dc.subject Machine learning es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Modeling and "smart" prototyping human-in-the-loop interactions for AmI environments es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00779-020-01508-x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//TIN2017-84094-R-AR//DISEÑO DE SISTEMAS AUTO-ADAPTATIVOS INVOLUCRANDO AL HUMANO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2019%2F009//PROCESOS AUTONOMOS EN ENTORNOS IOT/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Investigación en Métodos de Producción de Software - Centre d'Investigació en Mètodes de Producció de Software es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Gil, M.; Albert Albiol, M.; Fons Cors, J.; Pelechano Ferragud, V. (2022). Modeling and "smart" prototyping human-in-the-loop interactions for AmI environments. Personal and Ubiquitous Computing. 26:1413-1444. https://doi.org/10.1007/s00779-020-01508-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00779-020-01508-x es_ES
dc.description.upvformatpinicio 1413 es_ES
dc.description.upvformatpfin 1444 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26 es_ES
dc.relation.pasarela S\430290 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Nilsson T, Crabtree A, Fischer J, Koleva B (2019) Breaching the future: understanding human challenges of autonomous systems for the home. Pers Ubiquit Comput 23:287–307. https://doi.org/10.1007/s00779-019-01210-7 es_ES
dc.description.references Streitz N, Charitos D, Kaptein M, Böhlen M (2019) Grand challenges for ambient intelligence and implications for design contexts and smart societies. Journal of Ambient Intelligence and Smart Environments 11:87–107 es_ES
dc.description.references Farooq U, Grudin J (2016) Human computer integration. ACM Interactions 23(6):26–32 es_ES
dc.description.references Waytz, A.: How humans and machines can live and work together (May 2019), es_ES
dc.description.references Gams, M., Yu-Hua Gu, I., Härmä, A., Muñoz, A., Tam, V.: Artificial intelligence and ambient intelligence, Tenth Anniversary Issue, Journal of Ambient Intelligence and Smart Environments 11 (2019), 71–86. IOS Press es_ES
dc.description.references Streitz, N., Privat, G.: Ambient intelligence. Final section “Looking to the future”, in: The Universal Access Handbook, C. Stephanidis, ed., CRC Press, 2009, pp. 60.1–60.17 es_ES
dc.description.references Gil M, Albert M, Fons J, Pelechano V (2019) Designing human-in-the-loop autonomous cyber physical systems. Int J Hum Comput Stud 130:21–39 es_ES
dc.description.references Gil M, Albert M, Fons J, Pelechano V (2020) Engineering human-in-the-loop interactions in cyber physical systems. Information Software Technology 126:106349 es_ES
dc.description.references Fitts, P. M: Human engineering for an effective air-navigation and traffic-control system, National Research Council (1951) es_ES
dc.description.references Sheridan, T. B: On how often the supervisor should sample, IEEE Transactions on Systems Science and Cybernetics 6 (2) (1970) 140–145 es_ES
dc.description.references Lee JD, See KA (2004) Trust in automation: designing for appropriate reliance. Hum Factors 46(50–80):50–80 es_ES
dc.description.references Stanton, N. A., Young, M. S: Vehicle automation and driving performance, Ergonomics 41 (7) (2010) 1014–1028 es_ES
dc.description.references Cámara, J., Moreno, G., Garlan, D.: Reasoning about human participation in self- adaptive systems. In: 2015 IEEE/ACM 10th International Symposium on Software Engineering for Adaptive and Self-Managing Systems. pp. 146–156 (May 2015) es_ES
dc.description.references Dorn, C., Taylor, R. N. “Coupling software architecture and human architecture for collaboration-aware system adaptation,” in Proceedings of the 2013 International Conference on Software Engineering, ser. ICSE ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 53–62 es_ES
dc.description.references Evers, C., Kniewel, R., Geihs, K., Schmidt, L.: “The user in the loop: enabling user participation for self-adaptive applications,” Futur Gener Comput Syst, vol. 34, no. 0, pp. 110–123, 2014 es_ES
dc.description.references Cranor, L., A framework for reasoning about the human in the loop, in UPSEC'08 conference on usability, psychology, and security (2008) es_ES
dc.description.references Nothwang WD, McCourt MJ, Robinson RM, Burden SA, Curtis JW (2016) The human should be part of the control loop? In: Resilience week (RWS) es_ES
dc.description.references Nunes DS, Zhang P, Silva JS (2015) A survey on human-in-the-loop applications towards an internet of all. IEEE Communications Surveys and Tutorials 17(2):944–965 es_ES
dc.description.references Weiser M (1991) The computer for the 21st century. Sci Am:66–75 es_ES
dc.description.references Gibson JJ (1986) The ecological approach to visual perception. Lawrence Erlbaum Associates, London (first published in 1979) es_ES
dc.description.references Norman, D.A.: Affordance, conventions and design, Interactions 6(3) (1999), 38–43. ACM Press es_ES
dc.description.references Christakis N (2010) The face and others: issues of communication and social psychology. Papazisis Publications, Athens es_ES
dc.description.references Chin, J., Callaghan, V., Allouch, S.B.: The Internet of things: reflections on the past, present and future from a user centered and smart environments perspective, Tenth Anniversary Issue, Journal of Ambient Intelligence and Smart Environments 11 (2019), 45–69. IOS Press es_ES
dc.description.references Langley, P: Machine learning for adaptive user interfaces. pp. 53–62. Annual Conference on Artificial Intelligence. 1997 es_ES
dc.description.references Garcia-Ceja E, Riegler M (2019) Kvernberg. A. K., Torresen, J.: User-adaptive models for activity and emotion recognition using deep transfer learning and data augmentation, User Modeling and User-Adapted Interaction es_ES
dc.description.references Miller, C.A., Parasuraman, R.: Designing for flexible interaction between humans and automation: delegation interfaces for supervisory control, The Journal of the Human Factors and Ergonomics Society 49(1), pp. 57–75, March 2007 es_ES
dc.description.references Cheng, B.H., et al.: Software engineering for self-adaptive systems. pp. 1–26. Springer-Verlag (2009) es_ES
dc.description.references Mirnig AG, Gärtner MA, Laminger A, Meschtscherjakov S, Trösterer M, Tscheligi R, McCall F (2016) McGee: control transition interfaces in semiautonomous vehicles: a categorization framework and literature analysis. In: International conference on automotive user interfaces and interactive vehicular applications (AutomotiveUI ’17) es_ES
dc.description.references Dey AK (2001) Understanding and using context. Personal Ubiquitous Comput 5(1):4–7 es_ES
dc.description.references Eskins D, Sanders WH (2011) The multiple-asymmetric-utility system model: a framework for modeling cyber-human systems, in: proceedings of the 2011 Eighth International Conference on Quantitative Evaluation of SysTems. IEEE Computer Society, Washington, DC, USA, pp 233–242 es_ES
dc.description.references Buxton, B.: Integrating the periphery and context: A new model of telematics, in: Proceedings of Graphics Interface, 1995, pp. 239–246 es_ES
dc.description.references Horvitz E, Kadie C, Paek T, Hovel D (2003) Models of attention in computing and communication: from principles to applications. Commun ACM 46(3):52–59 es_ES
dc.description.references Ju W, Leifer L (2008) The design of implicit interactions: making interactive systems less obnoxious. Des Issues 24(3):72–84 es_ES
dc.description.references Beruscha, F., Augsburg, K., Manstetten, D., Schwieberdingen, R. B. G.: Haptic warning signals at the steering wheel: a literature survey regarding lane departure warning systems (short paper) (2011) es_ES
dc.description.references Chun J, Lee I, Park G, Seo J, Choi S, Han S (2013) H. Efficacy of haptic blind spot warnings applied through a steering wheel or a seatbelt. Transport Res F: Traffic Psychol Behav 21:231–241 es_ES
dc.description.references Trivedi MM, Cheng SY (2007) Holistic sensing and active displays for intelligent driver support systems. Computer 40(5):60–68 es_ES
dc.description.references Winkler, S., Kazazi, J., Vollrath, M.: Distractive or supportive – how warnings in the head-up display affect drivers’ gaze and driving behavior, in: 2015 IEEE 18th International Conference on Intelligent Transportation Systems, 2015, pp. 1035–1040 es_ES
dc.description.references Basili, V., Caldiera, G., Rombach, H. Goal question metrics paradigm, in: J. Marciniak (Ed.), Encyclopedia of Software Engineering, Wilely, 1994, pp. 528–532 es_ES
dc.description.references Cao Y, Theune M, Nijholt A (2009) Modality effects on cognitive load and performance in high-load information presentation, in: proceedings of the 14th international conference on intelligent user interfaces, IUI ’09. ACM, New York, NY, USA, pp 335–344 es_ES
dc.description.references Lemmelä S, Vetek A, Mäkelä K, Trendafilov D (2008) Designing and evaluating multimodal interaction for mobile contexts, in: proceedings of the 10th international conference on multimodal interfaces, ICMI ’08. ACM, New York, NY, USA, pp 265–272 es_ES
dc.description.references Obrenovic Z, Abascal J, Starcevic D (2007) Universal accessibility as a multimodal design issue. Commun ACM 50(5):83–88 es_ES
dc.description.references Bernsen NO (1994) Foundations of multimodal representations: a taxonomy of representational modalities. Interact Comput 6(4):347–371 es_ES
dc.description.references Reeves LM, Lai J, Larson JA, Oviatt S, Balaji TS, Buisine S, Collings P, Cohen P, Kraal B, Martin J-C, McTear M, Raman T, Stanney KM, Su H, Wang QY (2004) Guidelines for multimodal user interface design. Commun ACM 47:57–59 es_ES
dc.description.references Savio, N., Braiterman, J.: Design sketch: the context of mobile interaction, in: Proceedings of MobileHCI 2007, 2007, pp. 248–286 es_ES
dc.description.references Mohri M, Rostamizadeh A, Talwalkar A (2012) Foundations of machine learning. The MIT Press es_ES
dc.description.references Nair V (2010) Hinton. G. Rectified Linear Units Improve Restricted Boltzmann Machines, ICML es_ES
dc.description.references Goodfellow, I., Bengio, Y., Courville, A. 6.2.2.3 Softmax Units for Multinoulli Output Distributions. Deep Learning. MiT Press. pp. 180–184 (2016) es_ES
dc.description.references Diederik P (2015) Kingma and Jimmy Ba. Adam, A Method for Stochastic Optimization, International Conference on Learning Representations es_ES
dc.description.references de Lemos, R., Giese, H., Hausi A. Müller, Mary Shaw, Jesper Andersson, Marin Litoiu, Bradley Schmerl, Gabriel Tamura, Norha M. Villegas, Thomas Vogel, Danny Weyns, Luciano Baresi, Basil Becker, Nelly Bencomo and Yuriy Brun, Software Engineering for Self-Adaptive Systems: A second Research Roadmap, in Software Engineering for Self-Adaptive Systems II, LNCS, Springer, January 2013, vol. 7475, pp. 1–32 es_ES
dc.description.references IBM, An architectural blueprint for autonomic computing, Autonomic Computing,White Paper 2005 es_ES
dc.description.references Kitchenham B, Pickard L, Pfleeger SL (1995) Case studies for method and tool evaluation. IEEE Softw 12(4):52–62 es_ES
dc.description.references Wohlin C, Runeson P, Host M, Ohlsson MC, Regnell B (2000) Wesslen. A. Experimentation in Software Engineering, An Introduction, Springer US es_ES
dc.description.references Davis FD (1989) Perceived usefulness. Perceived ease of use and user acceptance of information technology, MIS Quarterly 13(3):319–340 es_ES
dc.description.references Jamieson S (2005) Likert scales: how to (ab) use them. Med Educ 38:1217–1218 es_ES
dc.description.references Runeson, P. Using students as experiment subjects – an analysis on graduate and freshmen student data, in: Proceedings 7th International Conference on Empirical Assessment & Evaluation in Software Engineering, 2003, pp. 95–102 es_ES
dc.description.references Litman, T.: Autonomous vehicle implementation predictions: implications for transport planning (2013) es_ES
dc.description.references Muller J No hands, no feet: my unnerving ride in Google’s driverless car. Forbes es_ES
dc.description.references Gil M, Giner P, Pelechano V (2012) Personalization for unobtrusive service interaction. Personal Ubiquitous Computing 16:543–561 es_ES
dc.description.references Vastenburg, M., Keyson, D.V., de Ridder, H. Considerate home notification systems: a user study of acceptability of notifications in a living room laboratory. International Journal of Human-ComputerStudies 67(9):814–826 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem