- -

RoMa at HAHA-2021: Deep Reinforcement Learning to Improve a Transformed-based Model for Humor Detection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

RoMa at HAHA-2021: Deep Reinforcement Learning to Improve a Transformed-based Model for Humor Detection

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rodriguez, Mariano es_ES
dc.contributor.author Ortega-Bueno, Reynier es_ES
dc.contributor.author Rosso, Paolo es_ES
dc.date.accessioned 2022-12-12T08:08:38Z
dc.date.available 2022-12-12T08:08:38Z
dc.date.issued 2021-09-21 es_ES
dc.identifier.issn 1613-0073 es_ES
dc.identifier.uri http://hdl.handle.net/10251/190555
dc.description.abstract [EN] In this paper, we describe our system we participated in the shared task ¿Humor Analysis based on Human Annotation (HAHA) at IberLEF-2021 with. Our system relies on data representations learned through fine-tuned neural language models. The representations are used to train a Siamese Neural Network (SNN) which learns to verify whether or not a pair of tweets belong to the same or distinct classes. A key point in our model is the heuristic used to create the pair of messages in the training and test phases. For that, we used a Deep Reinforcement Learning (DRL) strategy that aims at identifying a set of optimal prototypes in each class. In general, the results achieved are encouraging and give us a starting point for further improvements. es_ES
dc.description.sponsorship The work of the second and third authors was in the framework of the research project MISMIS-FAKEnHATE on MISinformation and MIScommunication in social media: FAKE news and HATE speech (PGC2018-096212-B-C31), funded by Spanish Ministry of Science and Innovation, and DeepPattern (PROMETEO/2019/121), funded by the Generalitat Valenciana. es_ES
dc.language Inglés es_ES
dc.publisher CEUR Workshop es_ES
dc.relation.ispartof Proceedings of the Working Notes of CLEF 2021, Conference and Labs of the Evaluation Forum, Bucharest, Romania, September 21st to 24th, 2021 es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Humor recognition es_ES
dc.subject Transformers, Deep reinforcement learning es_ES
dc.subject Siamese Neural Networks es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title RoMa at HAHA-2021: Deep Reinforcement Learning to Improve a Transformed-based Model for Humor Detection es_ES
dc.type Comunicación en congreso es_ES
dc.type Artículo es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096212-B-C31/ES/DESINFORMACION Y AGRESIVIDAD EN SOCIAL MEDIA: AGREGANDO INFORMACION Y ANALIZANDO EL LENGUAJE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F121//Deep learning for adaptative and multimodal interaction in pattern recognition/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Rodriguez, M.; Ortega-Bueno, R.; Rosso, P. (2021). RoMa at HAHA-2021: Deep Reinforcement Learning to Improve a Transformed-based Model for Humor Detection. CEUR Workshop. 1-8. http://hdl.handle.net/10251/190555 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename Iberian Languages Evaluation Forum (IberLEF 2021) es_ES
dc.relation.conferencedate Septiembre 21-21,2021 es_ES
dc.relation.conferenceplace Online es_ES
dc.relation.publisherversion https://ceur-ws.org/Vol-2943/ es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\450784 es_ES
dc.contributor.funder Generalitat Valenciana es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem