- -

Smart digital twin for ZDM-based job-shop scheduling

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Smart digital twin for ZDM-based job-shop scheduling

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Serrano Ruiz, Julio Cesar es_ES
dc.contributor.author Mula, Josefa es_ES
dc.contributor.author Poler, R. es_ES
dc.date.accessioned 2022-12-12T08:08:41Z
dc.date.available 2022-12-12T08:08:41Z
dc.date.issued 2021-06-09 es_ES
dc.identifier.isbn 978-1-6654-1980-2 es_ES
dc.identifier.uri http://hdl.handle.net/10251/190558
dc.description.abstract [EN] The growing digitization of manufacturing processes is revolutionizing the production job-shop by leading it toward the Smart Manufacturing (SM) paradigm. For a process to be smart, it is necessary to combine a given blend of data technologies, information and knowledge that enable it to perceive its environment and to autonomously perform actions that maximize its success possibilities in its assigned tasks. Of all the different ways leading to this transformation, both the generation of virtual replicas of processes and applying artificial intelligence (AI) techniques provide a wide range of possibilities whose exploration is today a far from negligible sources of opportunities to increase industrial companies¿ competitiveness. As a complex manufacturing process, production order scheduling in the job-shop is a necessary scenario to act by implementing these technologies. This research work considers an initial conceptual smart digital twin (SDT) framework for scheduling job-shop orders in a zero-defect manufacturing (ZDM) environment. The SDT virtually replicates the job-shop scheduling issue to simulate it and, based on the deep reinforcement learning (DRL) methodology, trains a prescriber agent and a process monitor. This simulation and training setting will facilitate analyses, optimization, defect and failure avoidance and, in short, decision making, to improve job-shop scheduling. es_ES
dc.description.sponsorship The research that led to these results received funding from the European Union H2020 Programme with grant agreement No. 825631 Zero-Defect Manufacturing Platform (ZDMP) and Grant agreement No. 958205 Industrial Data Services for Quality Control in Smart Manufacturing (i4Q), and from the Spanish Ministry of Science, Innovation and Universities with Grant Agreement RTI2018-101344-B-I00 "Optimisation of zero-defects production technologies enabling supply chains 4.0 (CADS4.0)" es_ES
dc.language Inglés es_ES
dc.publisher IEEE es_ES
dc.relation.ispartof 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Smart Manufacturing es_ES
dc.subject Job-shop es_ES
dc.subject Scheduling es_ES
dc.subject Smart digital twin es_ES
dc.subject Zero-defect manufacturing es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title Smart digital twin for ZDM-based job-shop scheduling es_ES
dc.type Comunicación en congreso es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.1109/MetroInd4.0IoT51437.2021.9488473 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101344-B-I00/ES/OPTIMIZACION DE TECNOLOGIAS DE PRODUCCION CERO-DEFECTOS HABILITADORAS PARA CADENAS DE SUMINISTRO 4.0/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/825631/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/958205/EU es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi es_ES
dc.description.bibliographicCitation Serrano Ruiz, JC.; Mula, J.; Poler, R. (2021). Smart digital twin for ZDM-based job-shop scheduling. IEEE. 510-515. https://doi.org/10.1109/MetroInd4.0IoT51437.2021.9488473 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename IEEE International Workshop on Metrology for Industry 4.0 & IoT 2021 es_ES
dc.relation.conferencedate Junio 07-09,2021 es_ES
dc.relation.conferenceplace Online es_ES
dc.relation.publisherversion https://doi.org/10.1109/MetroInd4.0IoT51437.2021.9488473 es_ES
dc.description.upvformatpinicio 510 es_ES
dc.description.upvformatpfin 515 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\446745 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem