Mostrar el registro sencillo del ítem
dc.contributor.author | Serrano Ruiz, Julio Cesar | es_ES |
dc.contributor.author | Mula, Josefa | es_ES |
dc.contributor.author | Poler, R. | es_ES |
dc.date.accessioned | 2022-12-12T08:08:41Z | |
dc.date.available | 2022-12-12T08:08:41Z | |
dc.date.issued | 2021-06-09 | es_ES |
dc.identifier.isbn | 978-1-6654-1980-2 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/190558 | |
dc.description.abstract | [EN] The growing digitization of manufacturing processes is revolutionizing the production job-shop by leading it toward the Smart Manufacturing (SM) paradigm. For a process to be smart, it is necessary to combine a given blend of data technologies, information and knowledge that enable it to perceive its environment and to autonomously perform actions that maximize its success possibilities in its assigned tasks. Of all the different ways leading to this transformation, both the generation of virtual replicas of processes and applying artificial intelligence (AI) techniques provide a wide range of possibilities whose exploration is today a far from negligible sources of opportunities to increase industrial companies¿ competitiveness. As a complex manufacturing process, production order scheduling in the job-shop is a necessary scenario to act by implementing these technologies. This research work considers an initial conceptual smart digital twin (SDT) framework for scheduling job-shop orders in a zero-defect manufacturing (ZDM) environment. The SDT virtually replicates the job-shop scheduling issue to simulate it and, based on the deep reinforcement learning (DRL) methodology, trains a prescriber agent and a process monitor. This simulation and training setting will facilitate analyses, optimization, defect and failure avoidance and, in short, decision making, to improve job-shop scheduling. | es_ES |
dc.description.sponsorship | The research that led to these results received funding from the European Union H2020 Programme with grant agreement No. 825631 Zero-Defect Manufacturing Platform (ZDMP) and Grant agreement No. 958205 Industrial Data Services for Quality Control in Smart Manufacturing (i4Q), and from the Spanish Ministry of Science, Innovation and Universities with Grant Agreement RTI2018-101344-B-I00 "Optimisation of zero-defects production technologies enabling supply chains 4.0 (CADS4.0)" | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IEEE | es_ES |
dc.relation.ispartof | 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT) | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Smart Manufacturing | es_ES |
dc.subject | Job-shop | es_ES |
dc.subject | Scheduling | es_ES |
dc.subject | Smart digital twin | es_ES |
dc.subject | Zero-defect manufacturing | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.title | Smart digital twin for ZDM-based job-shop scheduling | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1109/MetroInd4.0IoT51437.2021.9488473 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101344-B-I00/ES/OPTIMIZACION DE TECNOLOGIAS DE PRODUCCION CERO-DEFECTOS HABILITADORAS PARA CADENAS DE SUMINISTRO 4.0/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/825631/EU | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/958205/EU | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi | es_ES |
dc.description.bibliographicCitation | Serrano Ruiz, JC.; Mula, J.; Poler, R. (2021). Smart digital twin for ZDM-based job-shop scheduling. IEEE. 510-515. https://doi.org/10.1109/MetroInd4.0IoT51437.2021.9488473 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | IEEE International Workshop on Metrology for Industry 4.0 & IoT 2021 | es_ES |
dc.relation.conferencedate | Junio 07-09,2021 | es_ES |
dc.relation.conferenceplace | Online | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/MetroInd4.0IoT51437.2021.9488473 | es_ES |
dc.description.upvformatpinicio | 510 | es_ES |
dc.description.upvformatpfin | 515 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\446745 | es_ES |