- -

Ag/ZnO nano-structures synthesized by single-step solution combustion approach for the photodegradation of Cibacron Red and Triclopyr

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ag/ZnO nano-structures synthesized by single-step solution combustion approach for the photodegradation of Cibacron Red and Triclopyr

Mostrar el registro completo del ítem

Yadav, S.; Kumar, N.; Marí, B.; Mittal, A.; Jangra, V.; Sharma, A.; Kumari, K. (2021). Ag/ZnO nano-structures synthesized by single-step solution combustion approach for the photodegradation of Cibacron Red and Triclopyr. Current Nanoscience. 11(7):1977-1991. https://doi.org/10.1007/s13204-021-01943-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/190605

Ficheros en el ítem

Metadatos del ítem

Título: Ag/ZnO nano-structures synthesized by single-step solution combustion approach for the photodegradation of Cibacron Red and Triclopyr
Autor: Yadav, Suprabha Kumar, Naveen Marí, B. Mittal, Anuj Jangra, Vijaya Sharma, Anuradha Kumari, Kavitha
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Fecha difusión:
Resumen:
[EN] In the current work, an energy-efficient solution combustion route is adopted to synthesize silver-modified ZnO nanomaterials having 1, 3, 5, and 7 mol% of silver content. The samples were characterized by different ...[+]
Palabras clave: Solution combustion , Photocatalytic , Triclopyr , Oxygen vacancies , Prominent
Derechos de uso: Cerrado
Fuente:
Current Nanoscience. (issn: 1573-4137 )
DOI: 10.1007/s13204-021-01943-z
Editorial:
Bentham Science
Versión del editor: https://doi.org/10.1007/s13204-021-01943-z
Agradecimientos:
Maharshi Dayanand University, Rohtak and University Grant Commission are acknowledged by NK and SY for financial assistance in form of Radha Krishnan Minor Project and Senior Research Fellowship respectively.
Tipo: Artículo

References

Adhikari S, Banerjee A, Eswar NK et al (2015) Photocatalytic inactivation of E. coli by ZnO–Ag nanoparticles under solar radiation. RSC Adv 5:51067–51077. https://doi.org/10.1039/C5RA06406F

Ahn BD, Kang HS, Kim JH et al (2006) Synthesis and analysis of Ag-doped ZnO. J Appl Phys 100:093701. https://doi.org/10.1063/1.2364041

Ansari SA, Khan MM, Lee J, Cho MH (2014) Highly visible light active Ag@ZnO nanocomposites synthesized by gel-combustion route. J Ind Eng Chem 20:1602–1607. https://doi.org/10.1016/j.jiec.2013.08.006 [+]
Adhikari S, Banerjee A, Eswar NK et al (2015) Photocatalytic inactivation of E. coli by ZnO–Ag nanoparticles under solar radiation. RSC Adv 5:51067–51077. https://doi.org/10.1039/C5RA06406F

Ahn BD, Kang HS, Kim JH et al (2006) Synthesis and analysis of Ag-doped ZnO. J Appl Phys 100:093701. https://doi.org/10.1063/1.2364041

Ansari SA, Khan MM, Lee J, Cho MH (2014) Highly visible light active Ag@ZnO nanocomposites synthesized by gel-combustion route. J Ind Eng Chem 20:1602–1607. https://doi.org/10.1016/j.jiec.2013.08.006

Priya A, Arumugam M et al (2020) Fabrication of visible-light active BiFeWO6/ZnO nanocomposites with enhanced photocatalytic activity. Colloids Surf Physicochem Eng Asp 586:124294. https://doi.org/10.1016/j.colsurfa.2019.124294

Ba-Abbad MM, Kadhum AAH, Mohamad AB et al (2013) Visible light photocatalytic activity of Fe3+-doped ZnO nanoparticle prepared via sol–gel technique. Chemosphere 91:1604–1611. https://doi.org/10.1016/j.chemosphere.2012.12.055

Cai Y, Fan H, Xu M, Li Q (2013) Rapid photocatalytic activity and honeycomb Ag/ZnO heterostructures via solution combustion synthesis. Colloids Surf Physicochem Eng Asp 436:787–795. https://doi.org/10.1016/j.colsurfa.2013.08.008

Chai B, Wang X, Cheng S et al (2014) One-pot triethanolamine-assisted hydrothermal synthesis of Ag/ZnO heterostructure microspheres with enhanced photocatalytic activity. Ceram Int 40:429–435. https://doi.org/10.1016/j.ceramint.2013.06.019

Degen A, Kosec M (2000) Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution. J Eur Ceram Soc 20:667–673. https://doi.org/10.1016/S0955-2219(99)00203-4

Georgekutty R, Seery MK, Pillai SC (2008) A highly efficient Ag–ZnO photocatalyst: synthesis, properties, and mechanism. J Phys Chem C 112:13563–13570. https://doi.org/10.1021/jp802729a

González-Cortés SL (2020) Solution combustion synthesis of nanostructured solid catalysts for sustainable chemistry. World Scientific (Europe)

He H, Luo Z, Yu C (2020) Multifunctional ZnWO4 nanoparticles for photocatalytic removal of pollutants and disinfection of bacteria. J Photochem Photobiol Chem 401:112735. https://doi.org/10.1016/j.jphotochem.2020.112735

Kahouli M, Barhoumi A, Bouzid A et al (2015) Structural and optical properties of ZnO nanoparticles prepared by direct precipitation method. Superlattices Microstruct 85:7–23. https://doi.org/10.1016/j.spmi.2015.05.007

Karunakaran C, Rajeswari V, Gomathisankar P (2011) Optical, electrical, photocatalytic, and bactericidal properties of microwave synthesized nanocrystalline Ag–ZnO and ZnO. Solid State Sci 13:923–928. https://doi.org/10.1016/j.solidstatesciences.2011.02.016

Kim IS, Jeong E-K, Kim DY et al (2009) Investigation of p-type behavior in Ag-doped ZnO thin films by E-beam evaporation. Appl Surf Sci 255:4011–4014. https://doi.org/10.1016/j.apsusc.2008.10.117

Kumar N, Chauhan NS, Mittal A, Sharma S (2018) TiO2 and its composites as promising biomaterials: a review. Biometals 31:147–159. https://doi.org/10.1007/s10534-018-0078-6

Kumaresan N, Sinthiya MMA, Praveen Kumar M et al (2020) Investigation on the g-C3N4 encapsulated ZnO nanorods heterojunction coupled with GO for effective photocatalytic activity under visible light irradiation. Arab J Chem 13:2826–2843. https://doi.org/10.1016/j.arabjc.2018.07.013

Kumari V, Mittal A, Jindal J et al (2019) S-, N- and C-doped ZnO as semiconductor photocatalysts: a review. Front Mater Sci 13:1–22. https://doi.org/10.1007/s11706-019-0453-4

Kumari V, Yadav S, Mittal A et al (2020) Hydrothermally synthesized nano-carrots ZnO with CeO2 heterojunctions and their photocatalytic activity towards different organic pollutants. J Mater Sci Mater Electron 31:5227–5240. https://doi.org/10.1007/s10854-020-03083-6

Li Y, Zhao X, Fan W (2011) Structural, electronic, and optical properties of Ag-doped ZnO nanowires: first principles study. J Phys Chem C 115:3552–3557. https://doi.org/10.1021/jp1098816

Liang Y, Guo N, Li L et al (2016) Facile synthesis of Ag/ZnO micro-flowers and their improved ultraviolet and visible light photocatalytic activity. New J Chem 40:1587–1594. https://doi.org/10.1039/C5NJ02388B

Lin D, Wu H, Zhang R, Pan W (2009) Enhanced photocatalysis of electrospun Ag−ZnO heterostructured nanofibers. Chem Mater 21:3479–3484. https://doi.org/10.1021/cm900225p

Liu Y, Xu C, Zhu Z et al (2018) Self-assembled ZnO/Ag hollow spheres for effective photocatalysis and bacteriostasis. Mater Res Bull 98:64–69. https://doi.org/10.1016/j.materresbull.2017.09.057

Liu Y, Zhang Q, Xu M et al (2019) Novel and efficient synthesis of Ag–ZnO nanoparticles for the sunlight-induced photocatalytic degradation. Appl Surf Sci 476:632–640. https://doi.org/10.1016/j.apsusc.2019.01.137

Marí B, Singh KC, Verma N et al (2015) Luminescence properties of Eu2+/Eu3+ activated barium aluminate phosphors with Gd3+ concentration variation. Trans Indian Ceram Soc 74:157–161. https://doi.org/10.1080/0371750X.2015.1082932

Marí B, Singh KC, Verma N, Jindal J (2016) Optical properties of Yb-doped ZnO/MgO nanocomposites. Ceram Int 42:13018–13023. https://doi.org/10.1016/j.ceramint.2016.05.079

Mittal A, Mari B, Sharma S et al (2019a) Non-metal modified TiO2: a step towards visible light photocatalysis. J Mater Sci Mater Electron 30:3186–3207. https://doi.org/10.1007/s10854-018-00651-9

Mittal A, Sharma S, Kumari V et al (2019b) Highly efficient, visible active TiO2/CdS/ZnS photocatalyst, study of activity in an ultra low energy consumption LED based photo reactor. J Mater Sci Mater Electron 30:17933–17946. https://doi.org/10.1007/s10854-019-02147-6

Mittal A, Sharma S, Kumar T et al (2020) Surfactant-assisted hydrothermally synthesized novel TiO2/SnS@Pd nano-composite: structural, morphological and photocatalytic activity. J Mater Sci Mater Electron 31:2010–2021. https://doi.org/10.1007/s10854-019-02720-z

Mohammadzadeh S, Olya ME, Arabi AM et al (2015) Synthesis, characterization and application of ZnO-Ag as a nanophotocatalyst for organic compounds degradation, mechanism and economic study. J Environ Sci 35:194–207. https://doi.org/10.1016/j.jes.2015.03.030

Nehru LC, Swaminathan V, Sanjeeviraja C (2012) Rapid synthesis of nanocrystalline ZnO by a microwave-assisted combustion method. Powder Technol 226:29–33. https://doi.org/10.1016/j.powtec.2012.03.042

Pathak TK, Kroon RE, Swart HC (2018) Photocatalytic and biological applications of Ag and Au doped ZnO nanomaterial synthesized by combustion. Vacuum 157:508–513. https://doi.org/10.1016/j.vacuum.2018.09.020

Payra S, Challagulla S, Bobde Y et al (2019) Probing the photo- and electro-catalytic degradation mechanism of methylene blue dye over ZIF-derived ZnO. J Hazard Mater 373:377–388. https://doi.org/10.1016/j.jhazmat.2019.03.053

Payra S, Ganeshan SK, Challagulla S, Roy S (2020) A correlation story of syntheses of ZnO and their influence on photocatalysis. Adv Powder Technol 31:510–520. https://doi.org/10.1016/j.apt.2019.11.006

Pei Z, Ding L, Hu J et al (2013) Defect and its dominance in ZnO films: a new insight into the role of defect over photocatalytic activity. Appl Catal B Environ 142–143:736–743. https://doi.org/10.1016/j.apcatb.2013.05.055

Poulios I, Kositzi M, Kouras A (1998) Photocatalytic decomposition of triclopyr over aqueous semiconductor suspensions. J Photochem Photobiol Chem 115:175–183. https://doi.org/10.1016/S1010-6030(98)00259-7

Pyne S, Sahoo GP, Bhui DK et al (2012) Enhanced photocatalytic activity of metal coated ZnO nanowires. Spectrochim Acta A Mol Biomol Spectrosc 93:100–105. https://doi.org/10.1016/j.saa.2012.02.050

Sarma B, Sarma BK (2017) Fabrication of Ag/ZnO heterostructure and the role of surface coverage of ZnO microrods by Ag nanoparticles on the photophysical and photocatalytic properties of the metal-semiconductor system. Appl Surf Sci 410:557–565. https://doi.org/10.1016/j.apsusc.2017.03.154

Seftel EM, Popovici E, Mertens M et al (2008) SnIV-containing layered double hydroxides as precursors for nano-sized ZnO/SnO2 photocatalysts. Appl Catal B Environ 84:699–705. https://doi.org/10.1016/j.apcatb.2008.06.006

Sen P, Ghosh J, Abdullah A et al (2003) Preparation of Cu, Ag, Fe and Al nanoparticles by the exploding wire technique. J Chem Sci 115:499–508. https://doi.org/10.1007/BF02708241

Shraavan S, Challagulla S, Banerjee S, Roy S (2017) Unusual photoluminescence of Cu–ZnO and its correlation with photocatalytic reduction of Cr(VI). Bull Mater Sci 40:1415–1420. https://doi.org/10.1007/s12034-017-1496-8

Si Y, Chen W, Shang S et al (2020) g-C3N4/Pt/BiVO4 nanocomposites for highly efficient visible-light photocatalytic removal of contaminants and hydrogen generation. Nanotechnology 31:125706. https://doi.org/10.1088/1361-6528/ab5bc5

Su J, Shang Q, Guo T et al (2018) Construction of heterojunction ZnFe2O4/ZnO/Ag by using ZnO and Ag nanoparticles to modify ZnFe2O4 and its photocatalytic properties under visible light. Mater Chem Phys 219:22–29. https://doi.org/10.1016/j.matchemphys.2018.08.003

Vaiano V, Jaramillo-Paez CA, Matarangolo M et al (2019) UV and visible-light driven photocatalytic removal of caffeine using ZnO modified with different noble metals (Pt, Ag and Au). Mater Res Bull 112:251–260. https://doi.org/10.1016/j.materresbull.2018.12.034

Venkatesham M, Ayodhya D, Madhusudhan A, Veerabhadram G (2012) Synthesis of stable silver nanoparticles using gum acacia as reducing and stabilizing agent and study of its microbial properties: a novel green approach. Int J Green Nanotechnol 4:199–206. https://doi.org/10.1080/19430892.2012.705999

Verma N, Yadav S, Marí B et al (2018) Synthesis and charcterization of coupled ZnO/SnO2 photocatalysts and their activity towards degradation of cibacron red dye. Trans Indian Ceram Soc 77:1–7. https://doi.org/10.1080/0371750X.2017.1417059

Verma N, Marí B, Singh KC et al (2019) Enhanced luminescence by tunable coupling of Eu3+ and Tb3+ in ZnAl2O4:Eu3+:Tb3+ phosphor synthesized by solution combustion method. J Aust Ceram Soc 55:179–185. https://doi.org/10.1007/s41779-018-0223-2

Wang R, Xin JH, Yang Y et al (2004) The characteristics and photocatalytic activities of silver doped ZnO nanocrystallites. Appl Surf Sci 227:312–317. https://doi.org/10.1016/j.apsusc.2003.12.012

Wang J, Wang Z, Huang B et al (2012) Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl Mater Interfaces 4:4024–4030. https://doi.org/10.1021/am300835p

Welderfael T, Yadav OP, Taddesse AM, Kaushal J (2013) Synthesis, characterization and photocatalytic activities of Ag-N-codoped ZnO nanoparticles for degradation of methyl red. Bull Chem Soc Ethiop 27:221–232. https://doi.org/10.4314/bcse.v27i2.7

Wu Z, Xu C, Wu Y et al (2013) ZnO nanorods/Ag nanoparticles heterostructures with tunable Ag contents: A facile solution-phase synthesis and applications in photocatalysis. CrystEngComm 15:5994. https://doi.org/10.1039/c3ce40753e

Xin Z, Li L, Zhang X, Zhang W (2018) Microwave-assisted hydrothermal synthesis of chrysanthemum-like Ag/ZnO prismatic nanorods and their photocatalytic properties with multiple modes for dye degradation and hydrogen production. RSC Adv 8:6027–6038. https://doi.org/10.1039/C7RA12097D

Yadav S, Kumar N, Kumari V et al (2019) Photocatalytic degradation of Triclopyr, a persistent pesticide by ZnO/SnO2 nano-composities. Mater Today Proc 19:642–645. https://doi.org/10.1016/j.matpr.2019.07.746

Yadav S, Mittal A, Sharma S et al (2020) Low temperature synthesized ZnO/Al2O3 nano-composites for photocatalytic and antibacterial applications. Semicond Sci Technol 35:055008. https://doi.org/10.1088/1361-6641/ab7776

Yan Y, Al-Jassim MM, Wei S-H (2006) Doping of ZnO by group-IB elements. Appl Phys Lett 89:181912. https://doi.org/10.1063/1.2378404

Yin X, Que W, Liao Y et al (2012) Ag–TiO2 nanocomposites with improved photocatalytic properties prepared by a low temperature process in polyethylene glycol. Colloids Surf Physicochem Eng Asp 410:153–158. https://doi.org/10.1016/j.colsurfa.2012.06.039

Zhang X, Wang Y, Hou F et al (2017) Effects of Ag loading on structural and photocatalytic properties of flower-like ZnO microspheres. Appl Surf Sci 391:476–483. https://doi.org/10.1016/j.apsusc.2016.06.109

Zheng Y, Zheng L, Zhan Y et al (2007) Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis. Inorg Chem 46:6980–6986. https://doi.org/10.1021/ic700688f

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem