Mostrar el registro sencillo del ítem
dc.contributor.author | Baris-Schlicht, Ipek | es_ES |
dc.contributor.author | Magnossao de Paula, Angel Felipe | es_ES |
dc.contributor.author | Rosso, Paolo | es_ES |
dc.date.accessioned | 2022-12-14T11:46:49Z | |
dc.date.available | 2022-12-14T11:46:49Z | |
dc.date.issued | 2021-09-24 | es_ES |
dc.identifier.issn | 1613-0073 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/190657 | |
dc.description.abstract | [EN] Identifying check-worthy claims is often the first step of automated fact-checking systems. Tackling this task in a multilingual setting has been understudied. Encoding inputs with multilingual text representations could be one approach to solve the multilingual check-worthiness detection. However, this approach could suffer if cultural bias exists within the communities on determining what is check-worthy. In this paper, we propose a language identification task as an auxiliary task to mitigate unintended bias. With this purpose, we experiment joint training by using the datasets from CLEF-2021 CheckThat!, that contain tweets in English, Arabic, Bulgarian, Spanish and Turkish. Our results show that joint training of language identification and check-worthy claim detection tasks can provide performance gains for some of the selected languages. | es_ES |
dc.description.sponsorship | The work of P. Rosso was partially funded by the Spanish Ministry of Science and Innovation under the research project MISMIS-FAKEnHATE on MISinformation and MIScommunication in social media: FAKE news and HATE speech (PGC2018-096212-B-C31). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | CEUR | es_ES |
dc.relation.ispartof | Proceedings of the Working Notes of CLEF 2021, Conference and Labs of the Evaluation Forum, Bucharest, Romania, September 21st to 24th, 2021 | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Check-worthy claim detection | es_ES |
dc.subject | Language identification | es_ES |
dc.subject | Sentence transformers | es_ES |
dc.subject | Multilingual | es_ES |
dc.subject | Joint training | es_ES |
dc.subject | Bias | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | UPV at CheckThat! 2021: Mitigating Cultural Differences for Identifying Multilingual Check-worthy Claims | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Artículo | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096212-B-C31/ES/DESINFORMACION Y AGRESIVIDAD EN SOCIAL MEDIA: AGREGANDO INFORMACION Y ANALIZANDO EL LENGUAJE/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Baris-Schlicht, I.; Magnossao De Paula, AF.; Rosso, P. (2021). UPV at CheckThat! 2021: Mitigating Cultural Differences for Identifying Multilingual Check-worthy Claims. CEUR. 465-475. http://hdl.handle.net/10251/190657 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 12th Conference and Labs of the Evaluation Forum (CLEF 2021). Working Notes | es_ES |
dc.relation.conferencedate | Septiembre 21-24,2021 | es_ES |
dc.relation.conferenceplace | Online | es_ES |
dc.relation.publisherversion | https://ceur-ws.org/Vol-2936/ | es_ES |
dc.description.upvformatpinicio | 465 | es_ES |
dc.description.upvformatpfin | 475 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\450764 | es_ES |