Mostrar el registro sencillo del ítem
dc.contributor.author | Labadie Tamayo, Roberto | es_ES |
dc.contributor.author | Castro Castro, Daniel | es_ES |
dc.contributor.author | Ortega-Bueno, Reynier | es_ES |
dc.date.accessioned | 2022-12-14T11:47:00Z | |
dc.date.available | 2022-12-14T11:47:00Z | |
dc.date.issued | 2021-09-24 | es_ES |
dc.identifier.issn | 1613-0073 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/190669 | |
dc.description.abstract | [EN] In this paper, we describe the system proposed by UO-UPV team for addressing the task Profiling Hate Speech Spreaders on Twitter shared at PAN 2021. The system relies on a modular architecture, combining Deep Learning models with an introduced variant of the Impostor Method (IM). It receives a single profile composed of a fixed quantity of tweets. These posts are encoded as dense feature vectors using a fine-tuned transformer model and later combined to represent the whole profile. For classifying a new profile as hate speech spreader or not, it is compared by a similarity function with the Impostor Method with respect to random sampled prototypical profiles. In the final evaluation phase, our model achieved 74% and 82% of accuracy for English and Spanish languages respectively, ranking our team at 2¿¿ position and giving a starting point for further improvements. | es_ES |
dc.description.sponsorship | The work of the third author was in the framework of the research project MISMIS-FAKEnHATE on MISinformation and MIScommunication in social media: FAKE news and HATE speech (PGC2018-096212-B-C31), funded by Spanish Ministry of Science and Innovation, and DeepPattern (PROMETEO/2019/121), funded by the Generalitat Valenciana. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | CEUR | es_ES |
dc.relation.ispartof | Proceedings of the Working Notes of CLEF 2021, Conference and Labs of the Evaluation Forum, Bucharest, Romania, September 21st to 24th, 2021 | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Deep impostor method | es_ES |
dc.subject | Spectral graph convolutional neural network | es_ES |
dc.subject | Prototypes | es_ES |
dc.subject | Transformers | es_ES |
dc.title | Deep Modeling of Latent Representations for Twitter Profiles on Hate Speech Spreaders Identification Task | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Artículo | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096212-B-C31/ES/DESINFORMACION Y AGRESIVIDAD EN SOCIAL MEDIA: AGREGANDO INFORMACION Y ANALIZANDO EL LENGUAJE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F121//Deep learning for adaptative and multimodal interaction in pattern recognition/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Labadie Tamayo, R.; Castro Castro, D.; Ortega-Bueno, R. (2021). Deep Modeling of Latent Representations for Twitter Profiles on Hate Speech Spreaders Identification Task. CEUR. 2035-2046. http://hdl.handle.net/10251/190669 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 12th Conference and Labs of the Evaluation Forum (CLEF 2021). Working Notes | es_ES |
dc.relation.conferencedate | Septiembre 21-24,2021 | es_ES |
dc.relation.conferenceplace | Online | es_ES |
dc.relation.publisherversion | https://ceur-ws.org/Vol-2936/ | es_ES |
dc.description.upvformatpinicio | 2035 | es_ES |
dc.description.upvformatpfin | 2046 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\450785 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |