- -

Deep Modeling of Latent Representations for Twitter Profiles on Hate Speech Spreaders Identification Task

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Deep Modeling of Latent Representations for Twitter Profiles on Hate Speech Spreaders Identification Task

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Labadie Tamayo, Roberto es_ES
dc.contributor.author Castro Castro, Daniel es_ES
dc.contributor.author Ortega-Bueno, Reynier es_ES
dc.date.accessioned 2022-12-14T11:47:00Z
dc.date.available 2022-12-14T11:47:00Z
dc.date.issued 2021-09-24 es_ES
dc.identifier.issn 1613-0073 es_ES
dc.identifier.uri http://hdl.handle.net/10251/190669
dc.description.abstract [EN] In this paper, we describe the system proposed by UO-UPV team for addressing the task Profiling Hate Speech Spreaders on Twitter shared at PAN 2021. The system relies on a modular architecture, combining Deep Learning models with an introduced variant of the Impostor Method (IM). It receives a single profile composed of a fixed quantity of tweets. These posts are encoded as dense feature vectors using a fine-tuned transformer model and later combined to represent the whole profile. For classifying a new profile as hate speech spreader or not, it is compared by a similarity function with the Impostor Method with respect to random sampled prototypical profiles. In the final evaluation phase, our model achieved 74% and 82% of accuracy for English and Spanish languages respectively, ranking our team at 2¿¿ position and giving a starting point for further improvements. es_ES
dc.description.sponsorship The work of the third author was in the framework of the research project MISMIS-FAKEnHATE on MISinformation and MIScommunication in social media: FAKE news and HATE speech (PGC2018-096212-B-C31), funded by Spanish Ministry of Science and Innovation, and DeepPattern (PROMETEO/2019/121), funded by the Generalitat Valenciana. es_ES
dc.language Inglés es_ES
dc.publisher CEUR es_ES
dc.relation.ispartof Proceedings of the Working Notes of CLEF 2021, Conference and Labs of the Evaluation Forum, Bucharest, Romania, September 21st to 24th, 2021 es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Deep impostor method es_ES
dc.subject Spectral graph convolutional neural network es_ES
dc.subject Prototypes es_ES
dc.subject Transformers es_ES
dc.title Deep Modeling of Latent Representations for Twitter Profiles on Hate Speech Spreaders Identification Task es_ES
dc.type Comunicación en congreso es_ES
dc.type Artículo es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096212-B-C31/ES/DESINFORMACION Y AGRESIVIDAD EN SOCIAL MEDIA: AGREGANDO INFORMACION Y ANALIZANDO EL LENGUAJE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F121//Deep learning for adaptative and multimodal interaction in pattern recognition/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Labadie Tamayo, R.; Castro Castro, D.; Ortega-Bueno, R. (2021). Deep Modeling of Latent Representations for Twitter Profiles on Hate Speech Spreaders Identification Task. CEUR. 2035-2046. http://hdl.handle.net/10251/190669 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 12th Conference and Labs of the Evaluation Forum (CLEF 2021). Working Notes es_ES
dc.relation.conferencedate Septiembre 21-24,2021 es_ES
dc.relation.conferenceplace Online es_ES
dc.relation.publisherversion https://ceur-ws.org/Vol-2936/ es_ES
dc.description.upvformatpinicio 2035 es_ES
dc.description.upvformatpfin 2046 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\450785 es_ES
dc.contributor.funder Generalitat Valenciana es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem