- -

Is Short-Term Heart Rate Variability Good Enough to Predict Vascular Events in Hypertensive Patients?

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Is Short-Term Heart Rate Variability Good Enough to Predict Vascular Events in Hypertensive Patients?

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Tornero, Roberto es_ES
dc.contributor.author Fácila, Lorenzo es_ES
dc.contributor.author Bertomeu-González, Vicente es_ES
dc.contributor.author Zangróniz, Roberto es_ES
dc.contributor.author Alcaraz, Raúl es_ES
dc.contributor.author Rieta, J J es_ES
dc.date.accessioned 2022-12-16T08:08:55Z
dc.date.available 2022-12-16T08:08:55Z
dc.date.issued 2021-11-19 es_ES
dc.identifier.isbn 978-1-6654-4000-4 es_ES
dc.identifier.issn 2575-5145 es_ES
dc.identifier.uri http://hdl.handle.net/10251/190743
dc.description.abstract [EN] Vascular events are the main cause of premature death and disability in the developed countries, where there is great interest in the development of computational tools for their early detection. A very relevant variable for their study is the heart rate, that can be analyzed through heart rate variability (HRV). Furthermore, high blood pressure is an important risk factor for most cardiovascular diseases. In fact, small reductions in blood pressure are known to markedly reduce cardiovascular morbidity and mortality. This study evaluates the predictive value of short-term HRV (STHRV) by developing models based on data mining algorithms to stratify the risk of vascular events from hypertensive patients. For this specific framework, the performance of various machine learning models (Random Forest, Support Vector Machines, Gaussian Naive Bayes, K-N Nearest Neighbours and Logistic regression), trained with different time lengths of 5, 30 and 60 minutes of HRV features during sleep stage was compared. The analyzed HRV parameters were associated to time, frequency and nonlinear features. A total of 139 Holter recordings from hypertensive patients of whom 17 developed a vascular event were analyzed. Results indicated that classification models developed using STHRV, with only 5 minutes length, provided similar or even better results than those developed with longer time series. Furthermore, the STHRV models provided a higher sensitivity and a slightly higher F1 score. The best one, based on Support Vector Machines, yielded 88.2% sensitivity and 75% F1 score. Thus, this research suggests the feasibility of STHRV analysis for risk stratification of hypertensive patients to anticipate serious vascular events. es_ES
dc.description.sponsorship Research supported by grants DPI2017¿83952¿C3 from MINECO/AEI/FEDER UE, SBPLY/17/180501/000411 from JCCLM and AICO/2021/286 from GVA. es_ES
dc.language Inglés es_ES
dc.publisher IEEE es_ES
dc.relation.ispartof Proceedings of the 9th IEEE International Conference on E-Health and Bioengineering - EHB 2021 es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Heart rate variability es_ES
dc.subject HRV es_ES
dc.subject Blood pressure es_ES
dc.subject Hypertension es_ES
dc.subject Machine learning es_ES
dc.subject Classification models es_ES
dc.subject Vascular event es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Is Short-Term Heart Rate Variability Good Enough to Predict Vascular Events in Hypertensive Patients? es_ES
dc.type Comunicación en congreso es_ES
dc.type Artículo es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.1109/EHB52898.2021.9657659 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-83952-C3-1-R/ES/ESTUDIO MULTICENTRICO PARA LA EVALUACION DEL SUSTRATO ARRITMOGENICO EN PACIENTES CON FIBRILACION AURICULAR. APLICACION A LA ABLACION POR CATETER/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement///AICO%2F2021%2F015//MEJORA DE LA TERAPIA DE SUSTITUCIÓN ENZIMÁTICA EN NIÑOS DE EDAD TEMPRANA DIAGNOSTICADOS DE FIBROSIS QUÍSTICA MEDIANTE UN SOPORTE APP MÓVIL DE AUTOGESTIÓN (ENZIMAPP)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2021%2F286/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JCCM//SBPLY%2F17%2F180501%2F000411//Caracterización del sustrato auricular mediante análisis de señal como herramienta de asistencia procedimental en ablación por catéter de fibrilación auricular/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Tornero, R.; Fácila, L.; Bertomeu-González, V.; Zangróniz, R.; Alcaraz, R.; Rieta, JJ. (2021). Is Short-Term Heart Rate Variability Good Enough to Predict Vascular Events in Hypertensive Patients?. IEEE. 1-4. https://doi.org/10.1109/EHB52898.2021.9657659 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 9th IEEE International Conference on e-Health and Bioengineering (EHB 2021) es_ES
dc.relation.conferencedate Noviembre 18-19,2021 es_ES
dc.relation.conferenceplace Online es_ES
dc.relation.publisherversion https://doi.org/10.1109/EHB52898.2021.9657659 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 4 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\463384 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Junta de Comunidades de Castilla-La Mancha es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem