Mostrar el registro sencillo del ítem
dc.contributor.author | Tornero, Roberto | es_ES |
dc.contributor.author | Fácila, Lorenzo | es_ES |
dc.contributor.author | Bertomeu-González, Vicente | es_ES |
dc.contributor.author | Zangróniz, Roberto | es_ES |
dc.contributor.author | Alcaraz, Raúl | es_ES |
dc.contributor.author | Rieta, J J | es_ES |
dc.date.accessioned | 2022-12-16T08:08:55Z | |
dc.date.available | 2022-12-16T08:08:55Z | |
dc.date.issued | 2021-11-19 | es_ES |
dc.identifier.isbn | 978-1-6654-4000-4 | es_ES |
dc.identifier.issn | 2575-5145 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/190743 | |
dc.description.abstract | [EN] Vascular events are the main cause of premature death and disability in the developed countries, where there is great interest in the development of computational tools for their early detection. A very relevant variable for their study is the heart rate, that can be analyzed through heart rate variability (HRV). Furthermore, high blood pressure is an important risk factor for most cardiovascular diseases. In fact, small reductions in blood pressure are known to markedly reduce cardiovascular morbidity and mortality. This study evaluates the predictive value of short-term HRV (STHRV) by developing models based on data mining algorithms to stratify the risk of vascular events from hypertensive patients. For this specific framework, the performance of various machine learning models (Random Forest, Support Vector Machines, Gaussian Naive Bayes, K-N Nearest Neighbours and Logistic regression), trained with different time lengths of 5, 30 and 60 minutes of HRV features during sleep stage was compared. The analyzed HRV parameters were associated to time, frequency and nonlinear features. A total of 139 Holter recordings from hypertensive patients of whom 17 developed a vascular event were analyzed. Results indicated that classification models developed using STHRV, with only 5 minutes length, provided similar or even better results than those developed with longer time series. Furthermore, the STHRV models provided a higher sensitivity and a slightly higher F1 score. The best one, based on Support Vector Machines, yielded 88.2% sensitivity and 75% F1 score. Thus, this research suggests the feasibility of STHRV analysis for risk stratification of hypertensive patients to anticipate serious vascular events. | es_ES |
dc.description.sponsorship | Research supported by grants DPI2017¿83952¿C3 from MINECO/AEI/FEDER UE, SBPLY/17/180501/000411 from JCCLM and AICO/2021/286 from GVA. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IEEE | es_ES |
dc.relation.ispartof | Proceedings of the 9th IEEE International Conference on E-Health and Bioengineering - EHB 2021 | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Heart rate variability | es_ES |
dc.subject | HRV | es_ES |
dc.subject | Blood pressure | es_ES |
dc.subject | Hypertension | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Classification models | es_ES |
dc.subject | Vascular event | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Is Short-Term Heart Rate Variability Good Enough to Predict Vascular Events in Hypertensive Patients? | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Artículo | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1109/EHB52898.2021.9657659 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-83952-C3-1-R/ES/ESTUDIO MULTICENTRICO PARA LA EVALUACION DEL SUSTRATO ARRITMOGENICO EN PACIENTES CON FIBRILACION AURICULAR. APLICACION A LA ABLACION POR CATETER/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement///AICO%2F2021%2F015//MEJORA DE LA TERAPIA DE SUSTITUCIÓN ENZIMÁTICA EN NIÑOS DE EDAD TEMPRANA DIAGNOSTICADOS DE FIBROSIS QUÍSTICA MEDIANTE UN SOPORTE APP MÓVIL DE AUTOGESTIÓN (ENZIMAPP)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2021%2F286/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/JCCM//SBPLY%2F17%2F180501%2F000411//Caracterización del sustrato auricular mediante análisis de señal como herramienta de asistencia procedimental en ablación por catéter de fibrilación auricular/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia | es_ES |
dc.description.bibliographicCitation | Tornero, R.; Fácila, L.; Bertomeu-González, V.; Zangróniz, R.; Alcaraz, R.; Rieta, JJ. (2021). Is Short-Term Heart Rate Variability Good Enough to Predict Vascular Events in Hypertensive Patients?. IEEE. 1-4. https://doi.org/10.1109/EHB52898.2021.9657659 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 9th IEEE International Conference on e-Health and Bioengineering (EHB 2021) | es_ES |
dc.relation.conferencedate | Noviembre 18-19,2021 | es_ES |
dc.relation.conferenceplace | Online | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/EHB52898.2021.9657659 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 4 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\463384 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Junta de Comunidades de Castilla-La Mancha | es_ES |