- -

Novel Photoplethysmographic and Electrocardiographic Features for Enhanced Detection of Hypertensive Individuals

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Novel Photoplethysmographic and Electrocardiographic Features for Enhanced Detection of Hypertensive Individuals

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cano, Jesús es_ES
dc.contributor.author Quesada, Aurelio es_ES
dc.contributor.author Ravelli, Flavia es_ES
dc.contributor.author Zangróniz, Roberto es_ES
dc.contributor.author Alcaraz, Raúl es_ES
dc.contributor.author Rieta, J J es_ES
dc.date.accessioned 2022-12-16T08:09:00Z
dc.date.available 2022-12-16T08:09:00Z
dc.date.issued 2021-11-19 es_ES
dc.identifier.isbn 978-1-6654-4000-4 es_ES
dc.identifier.issn 2575-5145 es_ES
dc.identifier.uri http://hdl.handle.net/10251/190747
dc.description.abstract [EN] Hypertension is a major risk factor for many cardiovascular diseases, which are the leading cause of death worldwide. Regular monitoring is essential to provide early diagnosis since most patients with elevated blood pressure (BP) have asymptomatic hypertension. This work presents a method for BP classification using simultaneous electrocardiographic (ECG), photoplethysmographic (PPG) and BP signals. 86 recordings were used, being 35 normotensive, 26 prehypertensive and 25 hypertensive. It has been proposed 23 novel features to improve the discrimination between healthy and hypertensive individuals based on pulse arrival times (PAT) and morphological features from PPG, VPG and APG signal. Moreover, alternative classification models as Support Vector Machines (SVM), Naive Bayes or Coarse Trees were trained with the defined features to compare the classification performance. The classifier that provided the highest results comparing normotensive with prehypertensive and hypertensive subjects were Coarse Tree, providing an F1 score of 85.44% (Se of 86.27% and Sp of 77.14%). The use of new PPG and ECG features has successfully improved the discrimination between healthy and hypertensive individuals, around 7% of F1 score, so this machine learning methodology would be of high interest to detect HT introducing these techniques in wearable devices. es_ES
dc.description.sponsorship Research supported by grants DPI2017-83952-C3 from MINECO/AEI/FEDER UE, SBPLY/17/180501/000411 from JCCLM and AICO/2021/286 from GVA. es_ES
dc.language Inglés es_ES
dc.publisher IEEE es_ES
dc.relation.ispartof Proceedings of the 9th IEEE International Conference on E-Health and Bioengineering - EHB 2021 es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Photoplethysmogram (PPG) es_ES
dc.subject Blood pressure (BP) es_ES
dc.subject Machine learning (ML) es_ES
dc.subject Clasiffication models es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Novel Photoplethysmographic and Electrocardiographic Features for Enhanced Detection of Hypertensive Individuals es_ES
dc.type Comunicación en congreso es_ES
dc.type Artículo es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.1109/EHB52898.2021.9657546 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-83952-C3-1-R/ES/ESTUDIO MULTICENTRICO PARA LA EVALUACION DEL SUSTRATO ARRITMOGENICO EN PACIENTES CON FIBRILACION AURICULAR. APLICACION A LA ABLACION POR CATETER/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement///AICO%2F2021%2F286//Inteligencia Artificial para Revolucionar la Medicina Móvil Usando Dispositivos Llevables/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JCCM//SBPLY%2F17%2F180501%2F000411//Caracterización del sustrato auricular mediante análisis de señal como herramienta de asistencia procedimental en ablación por catéter de fibrilación auricular/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Cano, J.; Quesada, A.; Ravelli, F.; Zangróniz, R.; Alcaraz, R.; Rieta, JJ. (2021). Novel Photoplethysmographic and Electrocardiographic Features for Enhanced Detection of Hypertensive Individuals. IEEE. 1-4. https://doi.org/10.1109/EHB52898.2021.9657546 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 9th IEEE International Conference on e-Health and Bioengineering (EHB 2021) es_ES
dc.relation.conferencedate Noviembre 18-19,2021 es_ES
dc.relation.conferenceplace Online es_ES
dc.relation.publisherversion https://doi.org/10.1109/EHB52898.2021.9657546 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 4 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\463399 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Junta de Comunidades de Castilla-La Mancha es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem