- -

CFD Modeling of Reacting Diesel Sprays with Primary Reference Fuel

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

CFD Modeling of Reacting Diesel Sprays with Primary Reference Fuel

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zhou, Qiyan es_ES
dc.contributor.author Lucchini, Tommaso es_ES
dc.contributor.author D'Errico, Gianluca es_ES
dc.contributor.author Novella Rosa, Ricardo es_ES
dc.contributor.author García-Oliver, José M es_ES
dc.contributor.author Lu, Xingcai es_ES
dc.date.accessioned 2022-12-16T08:09:02Z
dc.date.available 2022-12-16T08:09:02Z
dc.date.issued 2021-04-15 es_ES
dc.identifier.issn 0148-7191 es_ES
dc.identifier.uri http://hdl.handle.net/10251/190748
dc.description.abstract [EN] Computational fluid dynamics (CFD) modeling has many potentials for the design and calibration of modern and future engine concepts, including facilitating the exploration of operation conditions and casting light on the involved physical and chemical phenomena. As more attention is paid to the matching of different fuel types and combustion strategies, the use of detailed chemistry in characterizing auto-ignition, flame stabilization processes and the formation of pollutant emissions is becoming critical, yet computationally intensive. Therefore, there is much interest in using tabulated approaches to account for detailed chemistry with an affordable computational cost. In the present work, the tabulated flamelet progress variable approach (TFPV), based on flamelet assumptions, was investigated and validated by simulating constant-volume Diesel combustion with primary reference fuels - binary mixtures of n-heptane and iso-octane. Simulations were initially carried out to evaluate and compare the performance of two kinetic models in homogeneous reactors and laminar diffusion flames, followed by turbulent reacting spray simulations considering different fuels, ambient temperatures, and oxygen concentrations. The sensitivity study of the turbulent Schmidt number was then conducted, and results in terms of ignition delay and lift-off length were compared with experimental data to determine a more appropriate global constant. Finally, parametric variations of ambient temperature and oxygen concentration were performed for six fuel blends ranging from PRF0 (n-heptane) to PRF100 (iso-octane), confirming the validity of the TFPV model. es_ES
dc.description.sponsorship Authors acknowledge the financial support from the China Scholarship Council (No. 201806230180) and Natural Science Foundation of China (No. 51961135105) for the first author's study in Politecnico di Milano, Italy es_ES
dc.language Inglés es_ES
dc.publisher SAE International es_ES
dc.relation.ispartof SAE Technical Papers es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title CFD Modeling of Reacting Diesel Sprays with Primary Reference Fuel es_ES
dc.type Comunicación en congreso es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4271/2021-01-0409 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//51961135105/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CSC//201806230180/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Zhou, Q.; Lucchini, T.; D'errico, G.; Novella Rosa, R.; García-Oliver, JM.; Lu, X. (2021). CFD Modeling of Reacting Diesel Sprays with Primary Reference Fuel. SAE International. 1-19. https://doi.org/10.4271/2021-01-0409 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename SAE World Congress Experience (WCX 2021) es_ES
dc.relation.conferencedate Abril 13-15,2021 es_ES
dc.relation.conferenceplace Online es_ES
dc.relation.publisherversion https://doi.org/10.4271/2021-01-0409 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\435453 es_ES
dc.contributor.funder China Scholarship Council es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.description.references Badami , M. , Mallamo , F. , Millo , F. , and Rossi , E.E. Influence of Multiple Injection Strategies on Emissions, Combustion Noise and BSFC of a DI Common Rail Diesel Engine SAE Transactions 111 1118 1129 2002 https://doi.org/10.4271/2002-01-0503 es_ES
dc.description.references Zhao , F. , Asmus , T.N. , Assanis , D.N. , Dec , J.E. , Eng , J.A. , and Najt , P.M. Homogeneous Charge Compression Ignition (HCCI) Engines SAE Technical Paper PT-94 2003 978-0-7680-1123-4 es_ES
dc.description.references Selim , M.Y.E. Sensitivity of Dual Fuel Engine Combustion and Knocking Limits to Gaseous Fuel Composition Energy Conversion and Management 45 411 425 2004 10.1016/S0196-8904(03)00150-X es_ES
dc.description.references Reitz , R.D. and Duraisamy , G. Review of High Efficiency and Clean Reactivity Controlled Compression Ignition (RCCI) Combustion in Internal Combustion Engines Progress in Energy and Combustion Science 46 12 71 2015 10.1016/j.pecs.2014.05.003 es_ES
dc.description.references Kalghatgi , G.T. The Outlook for Fuels for Internal Combustion Engines International Journal of Engine Research 15 383 398 2014 10.1177/1468087414526189 es_ES
dc.description.references Lu , X. , Han , D. , and Huang , Z. Fuel Design and Management for the Control of Advanced Compression-Ignition Combustion Modes Progress in Energy and Combustion Science 37 741 783 2011 10.1016/j.pecs.2011.03.003 es_ES
dc.description.references Lopez , J.J. , Garcia-Oliver , J.M. , Garcia , A. , and Domenech , V. Gasoline Effects on Spray Characteristics, Mixing and Auto-Ignition Processes in a CI Engine under Partially Premixed Combustion Conditions Applied Thermal Engineering 70 996 1006 2014 10.1016/j.applthermaleng.2014.06.027 es_ES
dc.description.references Payri , R. , Garcia-Oliver , J.M. , Xuan , T. , and Bardi , M. A Study on Diesel Spray Tip Penetration and Radial Expansion under Reacting Conditions Applied Thermal Engineering 90 619 629 2015 10.1016/j.applthermaleng.2014.06.027 es_ES
dc.description.references Farouk , T.I. , Xu , Y. , Avedisian , C.T. , and Dryer , F.L. Combustion Characteristics of Primary Reference Fuel (PRF) Droplets: Single Stage High Temperature Combustion to Multistage Cool Flame Behavior Proceedings of the Combustion Institute 36 2585 2594 2017 10.1016/j.proci.2016.07.066 es_ES
dc.description.references Bhattachar , S. and Haworth , D.C. Simulations of Transient N-Heptane and N-Dodecane Spray Flames under Engine-Relevant Conditions using a Transported PDF Method Combustion and Flame 160 2083 2102 2013 10.1016/j.combustflame.2013.05.003 es_ES
dc.description.references Mittal , V. , Cook , D.J. , and Pitsch , H. An Extended Multi-Regime Flamelet Model for IC Engines Combustion and Flame 159 2767 2776 2012 10.1016/j.combustflame.2012.01.014 es_ES
dc.description.references Kong , S.-C. , Han , Z. , and Reitz , R.D. The Development and Application of a Diesel Ignition and Combustion Model for Multidimensional Engine Simulation SAE Transactions 104 502 518 1995 https://doi.org/10.4271/950278 es_ES
dc.description.references Colin , O. and Benkenida , A. The 3-Zones Extended Coherent Flame Model (ECFM3z) for Computing Premixed/Diffusion Combustion Oil & Gas Science and Technology 59 593 609 2004 10.2516/ogst:2004043 es_ES
dc.description.references Haworth , D.C. Progress in Probability Density Function Methods for Turbulent Reacting Flows Progress in Energy and Combustion Science 36 168 259 2010 10.1016/j.pecs.2009.09.003 es_ES
dc.description.references Felden , A. , Esclapez , L. , Riber , E. , Cuenot , B. , and Wang , H. Including Real Fuel Chemistry in LES of Turbulent Spray Combustion Combustion and Flame 193 397 416 2018 10.1016/j.combustflame.2018.03.027 es_ES
dc.description.references van Oijen , J.A. , Lammers , F.A. , and de Goey , L.P.H. Modeling of Complex Premixed Burner Systems by Using Flamelet-Generated Manifolds Combustion and Flame 127 2124 2134 2001 10.1016/S0010-2180(01)00316-9 es_ES
dc.description.references Gicquel , O. , Darabiha , N. , and Thevenin , D. Liminar Premixed Hydrogen/Air Counterflow Flame Simulations using Flame Prolongation of ILDM with Differential Diffusion Proceedings of the Combustion Institute 28 1901 1908 2000 10.1016/S0082-0784(00)80594-9 es_ES
dc.description.references Pierce , C.D. and Moin , P. Progress-Variable Approach for Large-Eddy Simulation of Non-Premixed Turbulent Combustion Journal of Fluid Mechanics 504 73 97 2004 10.1017/S0022112004008213 es_ES
dc.description.references Lionel , M. , Jean-Baptiste , M. , Stephane , J. , and Olivier , C. Evaluation of Different Tabulation Techniques Dedicated to the Prediction of the Combustion and Pollutants Emissions on a Diesel Engine with 3D CFD SAE Technical Paper 2013-01-1093 2015 https://doi.org/10.4271/2013-01-1093 es_ES
dc.description.references Naud , B. , Novella , R. , Pastor , J.M. , and Winklinger , J.F. RANS Modelling of a Lifted H2/N2 Flame Using an Unsteady Flamelet Progress Variable Approach with Presumed PDF Combustion and Flame 162 893 906 2015 10.1016/j.combustflame.2014.09.014 es_ES
dc.description.references Michel , J.-B. , Colin , O. , Angelberger , C. , and Veynante , D. Using the Tabulated Diffusion Flamelet Model ADF-PCM to Simulate a Lifted Methane Air Jet Flame Combustion and Flame 156 1318 1331 2009 10.1016/j.combustflame.2008.12.012 es_ES
dc.description.references Lucchini , T. , Pontoni , D. , D’Errico , G. , and Somers , B. Modeling Diesel Combustion with Tabulated Kinetics and Different Flame Structure Assumptions Based on Flamelet Approach International Journal of Engine Research 21 89 100 2020 10.1177/1468087419862945 es_ES
dc.description.references Zhou , Q. , Lucchini , T. , D’Errico , G. , Maes , N. et al. Computational Modeling of Diesel Spray Combustion with Multiple Injections SAE Technical Paper 2020-04-25 2020 https://doi.org/10.4271/2020-01-1155 es_ES
dc.description.references Lucchini , T. , D’Errico , G. , Cerri , T. , Onorati , A. , and Hardy , G. Experimental Validation of Combustion Models for Diesel Engines Based on Tabulated Kinetics in a Wide Range of Operating Conditions SAE Technical Paper 2017-01-15 2017 https://doi.org/10.4271/2017-24-0029 es_ES
dc.description.references Zhou , Q. , Lucchini , T. , D’Errico , G. , and Hardy , G. Validation of Diesel Combustion Models with Turbulence Chemistry Interaction and Detailed Kinetics SAE Technical Paper 2019-24-0088 2019 https://doi.org/10.4271/2019-24-0088 es_ES
dc.description.references Jangi , M. , Lucchini , T. , Gong , C. , and Bai , X.-S. Effects of Fuel Cetane Number on the Structure of Diesel Spray Combustion: An Accelerated Eulerian Stochastic Fields Method Combustion Theory and Modelling 19 549 567 2015 10.1080/13647830.2015.1057234 es_ES
dc.description.references Yimer , I. , Campbell , I. , and Jiang , L.-Y. Estimation of the Turbulent Schmidt Number from Experimental Profiles of Axial Velocity and Concentration for High-Reynolds-Number Jet Flows Canadian Aeronautics and Space Journal 48 195 200 2002 10.5589/q02-024 es_ES
dc.description.references Spalding , D.B. Concentration Fluctuations in a Round Turbulent Free Jet Chemical Engineering Science 26 95 107 1971 10.1016/0009-2509(71)86083-9 es_ES
dc.description.references Launder , B.E. Heat and Mass Transport Bradshaw , P. Turbulence Topics in Applied Physics Berlin, Heidelberg Springer 1976 231 287 es_ES
dc.description.references Tominaga , Y. and Stathopoulos , T. Turbulent Schmidt numbers for CFD Analysis with Various Types of Flowfield Atmospheric Environment 41 8091 8099 2007 10.1016/j.atmosenv.2007.06.054 es_ES
dc.description.references Combest , D.P. , Ramachandran , P.A. , and Dudukovic , M.P. On the Gradient Diffusion Hypothesis and Passive Scalar Transport in Turbulent Flows Industrial & Engineering Chemistry Research 50 8817 8823 2011 10.1021/ie200055s es_ES
dc.description.references Mompean , G. Three-Equation Turbulence Model for Prediction of the Mean Square Temperature Variance in Grid-Generated Flows and Round Jets International Journal of Heat and Mass Transfer 37 1165 1172 1994 10.1016/0017-9310(94)90202-X es_ES
dc.description.references Crocker , D.S. , Nickolaus , D. , and Smith , C.E. CFD Modeling of a Gas Turbine Combustor from Compressor Exit to Turbine Inlet Journal of Engineering for Gas Turbines and Power 121 89 95 1999 10.1115/1.2816318 es_ES
dc.description.references Eklund , D. , Baurle , R. , and Gruber , M. Numerical Study of a Scramjet Combustor Fueled by an Aerodynamic Ramp Injector in Dual-Mode Combustion 39th Aerospace Sciences Meeting and Exhibit American Institute of Aeronautics and Astronautics es_ES
dc.description.references Xiao , X. , Edwards , J.R. , Hassan , H.A. , and Culter , A.D. Variable Turbulent Schmidt-Number Formulation for Scramjet Applications AIAA J 44 3 593 599 2006 10.2514/1.15450 es_ES
dc.description.references https://ecn.sandia.gov es_ES
dc.description.references Desantes , J.M. , Garcia-Oliver , J.M. , Xuan , T. , and Vera-Tudela , W. A Study on Tip Penetration Velocity and Radial Expansion of Reacting Diesel Sprays with Different Fuels Fuel 207 323 335 2017 10.1016/j.fuel.2017.06.108 es_ES
dc.description.references Pastor , J.V. , Garcia-Oliver , J.M. , Lopez , J.J. , and Vera-Tudela , W. An Experimental Study of the Effects of Fuel Properties on Reactive Spray Evolution Using Primary Reference Fuels Fuel 163 260 270 2016 10.1016/j.fuel.2015.09.064 es_ES
dc.description.references Lucchini , T. , D’Errico , G. , Onorati , A. , Frassoldati , A. et al. Modeling Non-Premixed Combustion Using Tabulated Kinetics and Different Fame Structure Assumptions SAE International Journal of Engines 10 2 593 607 2017 https://doi.org/10.4271/2017-01-0556 es_ES
dc.description.references D’Errico , G. , Lucchini , T. , Onorati , A. , and Hardy , G. Computational Fluid Dynamics Modeling of Combustion in Heavy-Duty Diesel Engines International Journal of Engine Research 16 112 124 2015 10.1177/1468087414561276 es_ES
dc.description.references Lehtiniemi , H. , Zhang , Y. , Rawat , R. , and Mauss , F. Efficient 3-D CFD Combustion Modeling with Transient Flamelet Models SAE Technical Paper 2008-01-0957 2008 https://doi.org/10.4271/2008-01-0957 es_ES
dc.description.references Barths , H. , Hasse , C. , and Peters , N. Computational Fluid Dynamics Modelling of Non-Premixed Combustion in Direct Injection Diesel Engines International Journal of Engine Research 1 249 267 2000 10.1243/1468087001545164 es_ES
dc.description.references Peters , N. Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion Progress in Energy and Combustion Science 10 319 339 1984 10.1016/0360-1285(84)90114-X es_ES
dc.description.references D’Errico , G. , Lucchini , T. , Di Gioia , R. , and Bonandrini , G. Application of the CTC Model to Predict Combustion and Pollutant Emissions in a Common-Rail Diesel Engine Operating with Multiple Injections and High EGR SAE Technical Paper 2012-01-0154 2012 https://doi.org/10.4271/2012-01-0154 es_ES
dc.description.references Lucchini , T. , Cornolti , L. , Montenegro , G. , D’Errico , G. et al. A Comprehensive Model to Predict the Initial Stage of Combustion in SI Engines SAE Technical Paper 2013-01-1087 2013 https://doi.org/10.4271/2013-01-1087 es_ES
dc.description.references Lucchini , T. , Della Torre , A. , D’Errico , G. , Montenegro , G. et al. Automatic Mesh Generation for CFD Simulations of Direct-Injection Engines SAE Technical Paper 2015-01-0376 2015 https://doi.org/10.4271/2015-01-0376 es_ES
dc.description.references POPE , S.B. An Explanation of the Turbulent Round-Jet/Plane-Jet Anomaly AIAA Journal 16 3 279 281 1978 10.2514/3.7521 es_ES
dc.description.references Ferziger , J.H. and Peric , M. Computational Methods for Fluid Dynamics Springer Science & Business Media 2012 es_ES
dc.description.references Reitz , R. Modeling Atomization Processes in High-Pressure Vaporizing Sprays Atomisation Spray Technology 3 309 337 Jan. 1987 es_ES
dc.description.references Reitz , R.D. and Diwakar , R. Effect of Drop Breakup on Fuel Sprays SAE Technical Paper 860469 1986 https://doi.org/10.4271/860469 es_ES
dc.description.references Baumgarten , C. Mixture Formation in Internal Combustion Engines. Heat and Mass Transfer Berlin Heidelberg Springer-Verlag 2006 es_ES
dc.description.references Lucchini , T. , D’Errico , G. , and Ettorre , D. Numerical Investigation of the Spray-Mesh-Turbulence Interactions for High-Pressure, Evaporating Sprays at Engine Conditions International Journal of Heat and Fluid Flow 32 285 297 2011 10.1016/j.ijheatfluidflow.2010.07.006 es_ES
dc.description.references Zhou , Q. , Lucchini , T. , D’Errico , G. , Hardy , G. , and Lu , X. Modeling Heavy-Duty Diesel Engines Using Tabulated Kinetics in a Wide Range of Operating Conditions International Journal of Engine Research 2020 10.1177/1468087419896165 es_ES
dc.description.references Ranzi , E. , Frassoldati , A. , Stagni , A. , Pelucchi , M. et al. Reduced Kinetic Schemes of Complex Reaction Systems: Fossil and Biomass-Derived Transportation Fuels International Journal of Chemical Kinetics 46 9 512 542 2014 10.1002/kin.20867 es_ES
dc.description.references Stagni , A. , Cuoci , A. , Frassoldati , A. , Faravelli , T. , and Ranzi , E. Lumping and Reduction of Detailed Kinetic Schemes: An Effective Coupling Industrial & Engineering Chemistry Research 53 9004 9016 2014 10.1021/ie403272f es_ES
dc.description.references Stagni , A. , Frassoldati , A. , Cuoci , A. , Faravelli , T. , and Ranzi , E. Skeletal Mechanism Reduction through Species-Targeted Sensitivity Analysis Combustion and Flame 163 382 393 2016 10.1016/j.combustflame.2015.10.013 es_ES
dc.description.references Mehl , M. , Pitz , W.J. , Westbrook , C.K. , and Curran , H.J. Kinetic Modeling of Gasoline Surrogate Components and Mixtures Under Engine Conditions Proceedings of the Combustion Institute 33 193 200 2011 10.1016/j.proci.2010.05.027 es_ES
dc.description.references Payri , R. , Garcia-Oliver , J.M. , Bardi , M. , and Manin , J. Fuel Temperature Influence on Diesel Sprays in Inert and Reacting Conditions Applied Thermal Engineering 35 185 195 2012 10.1016/j.applthermaleng.2011.10.027 es_ES
dc.description.references Paredi , D. , Lucchini , T. , D’Errico , G. , Onorati , A. et al. CFD Modeling of Spray Evolution for Spark-Ignition, Direct Injection Engines AIP Conference Proceedings 2191 2019 020125 10.1063/1.5138858 es_ES
dc.description.references Paredi , D. , Lucchini , T. , D’Errico , G. , Onorati , A. et al. Validation of a Comprehensive Computational Fluid Dynamics Methodology to Predict the Direct Injection Process of Gasoline Sprays Using Spray G Experimental Data International Journal of Engine Research 21 199 216 2020 10.1177/1468087419868020 es_ES
dc.description.references Payri , F. , Garcia-Oliver , J.M. , Novella , R. , and Perez-Sanchez , E.J. Influence of the N-Dodecane Chemical Mechanism on the CFD Modelling of the Diesel-Like ECN Spray a Flame Structure at Different Ambient Conditions Combustion and Flame 208 198 218 2019 10.1016/j.combustflame.2019.06.032 es_ES
dc.description.references Mastorakos , E. Ignition of Turbulent Non-Premixed Flames Progress in Energy and Combustion Science 35 57 97 2009 10.1016/j.pecs.2008.07.002 es_ES
dc.description.references Mastorakos , E. , Baritaud , T.A. , and Poinsot , T.J. Numerical Simulations of Autoignition in Turbulent Mixing Flows Combustion and Flame 109 198 223 1997 10.1016/S0010-2180(96)00149-6 es_ES
dc.description.references Dahms , R.N. , Paczko , G.A. , Skeen , S.A. , and Pickett , L.M. Understanding the Ignition Mechanism of High-Pressure Spray Flames Proceedings of the Combustion Institute 36 2615 2623 2017 10.1016/j.proci.2016.08.023 es_ES
dc.description.references Gong , C. , Jangi , M. , and Bai , X.-S. Large Eddy Simulation of N-Dodecane Spray Combustion in a High Pressure Combustion Vessel Applied Energy 136 373 381 2014 10.1016/j.apenergy.2014.09.030 es_ES
dc.description.references Nishiki , S. , Hasegawa , T. , Borghi , R. , and Himeno , R. Modelling of Turbulent Scalar Flux in Turbulent Premixed Flames Based on DNS Databases Combustion Theory and Modelling 10 39 55 2006 10.1080/13647830500307477 es_ES
dc.description.references Keistler , P. , Xiao , X. , Hassan , H. , and Rodriguez , C. Simulation of Supersonic Combustion Using Variable Turbulent Prandtl/Schmidt Number Formulation 36th AIAA Fluid Dynamics Conference and Exhibit 10.2514/6.2006-3733 es_ES
dc.description.references Watanabe , T. , Sakai , Y. , Nagata , K. , and Terashima , O. Turbulent Schmidt Number and Eddy Diffusivity Change with a Chemical Reaction Journal of Fluid Mechanics 754 98 121 2014 10.1017/jfm.2014.387 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem