- -

Numerical Estimation of Wiebe Function Parameters Using Artificial Neural Networks in SI Engine

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Numerical Estimation of Wiebe Function Parameters Using Artificial Neural Networks in SI Engine

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Torregrosa, A. J. es_ES
dc.contributor.author Broatch, A. es_ES
dc.contributor.author Olmeda, P. es_ES
dc.contributor.author Aceros, Sebastian es_ES
dc.date.accessioned 2022-12-16T08:09:04Z
dc.date.available 2022-12-16T08:09:04Z
dc.date.issued 2021-04-15 es_ES
dc.identifier.issn 0148-7191 es_ES
dc.identifier.uri http://hdl.handle.net/10251/190749
dc.description.abstract [EN] In modeling an Internal Combustion Engine, the combustion sub-model plays a critical role in the overall simulation of the engine as it provides the Mass Fraction Burned (MFB). Analytically, the Heat Release Rate (HRR) can be obtained using the Wiebe function, which is nothing more than a mathematical formulation of the MFB. The mentioned function depends on the following four parameters: efficiency parameter, shape factor, crankshaft angle, and duration of the combustion. In this way, the Wiebe function can be adjusted to experimentally measured values of the mass fraction burned at various operating points using a least-squares regression, and thus obtaining specific values for the unknown parameters. Nevertheless, the main drawback of this approach is the requirement of testing the engine at a given engine load/speed condition. Furthermore, the main objective of this study is to propose a predictive model of the Wiebe parameters for any operating point of the tested SI engine. For this purpose, an Artificial Neural Network (ANN) is developed from the experimental data. A criterion was defined to choose the best-trained network. Finally, the Wiebe parameters are estimated with the neural networks for different operating conditions. Moreover, the mass fractions burned generated from the Wiebe functions are compared with the respective experimental values from several operating points measured in the engine test bench. Small differences were found between the estimated and experimental mass fractions burned. Therefore, the effectiveness of the developed ANN model as a prediction tool for the engine MFB is verified. es_ES
dc.language Inglés es_ES
dc.publisher SAE International es_ES
dc.relation.ispartof SAE Technical Papers es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Numerical Estimation of Wiebe Function Parameters Using Artificial Neural Networks in SI Engine es_ES
dc.type Comunicación en congreso es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4271/2021-01-0379 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Torregrosa, AJ.; Broatch, A.; Olmeda, P.; Aceros, S. (2021). Numerical Estimation of Wiebe Function Parameters Using Artificial Neural Networks in SI Engine. SAE International. 1-10. https://doi.org/10.4271/2021-01-0379 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename SAE World Congress Experience (WCX 2021) es_ES
dc.relation.conferencedate Abril 13-15,2021 es_ES
dc.relation.conferenceplace Online es_ES
dc.relation.publisherversion https://doi.org/10.4271/2021-01-0379 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\435301 es_ES
dc.description.references Krzyzanowski, M., Kuna-Dibbert, B., and Schneider, J. , Health Effects of Transport-related Air Pollution (2005), ISBN:9289013737. es_ES
dc.description.references Heck, R.M., and Farrauto, R.J. , “Automobile Exhaust Catalysts,” Appl. Catal. A Gen. 221(1-2):443-457, 2001, doi:10.1016/S0926-860X(01)00818-3. es_ES
dc.description.references Attard, W.P., Konidaris, S., Hamori, F., Toulson, E., and Watson, H.C. , “Compression Ratio Effects on Performance, Efficiency, Emissions and Combustion in a Carbureted and PFI Small Engine,” SAE Technical Paper 2007-01-3623, 2007, https://doi.org/10.4271/2007-01-3623. es_ES
dc.description.references Payri González, F. and Desantes Fernández, J.M. , “Motores de Combustión Interna Alternativos,” Editorial Universitat Politècnica de València, ISBN 9788483637050, 2011. es_ES
dc.description.references De Bellis, V., Bozza, F., and Tufano, D. , “A Comparison between Two Phenomenological Combustion Models Applied to Different SI Engines,” SAE Technical Paper 2017-01-2184, 2017, https://doi.org/10.4271/2017-01-2184. es_ES
dc.description.references Giglio, V., and Di Gaeta, A. , “Novel Regression Models for Wiebe Parameters Aimed at 0D Combustion Simulation in Spark Ignition Engines,” Energy 210:118442, 2020, doi:10.1016/j.energy.2020.118442. es_ES
dc.description.references Payri, F., Molina, S., Martín, J., and Armas, O. , “Influence of Measurement Errors and Estimated Parameters on Combustion Diagnosis,” Appl. Therm. Eng. 26(2-3):226-236, 2006, doi:10.1016/j.applthermaleng.2005.05.006. es_ES
dc.description.references Heywood, J.B., Higgins, J.M., Watts, P.A., and Tabaczynski, R.J. , Development and Use of a Cycle Simulation to Predict SI Engine Efficiency and NOx Emissions, 1979, https://doi.org/10.4271/790291. es_ES
dc.description.references Abiodun, O.I., Jantan, A., Omolara, A.E., Dada, K.V., Mohamed, N.A.E., and Arshad, H. , “State-of-the-Art in Artificial Neural Network Applications: A Survey,” Heliyon 4(11):e00938, 2018, doi:10.1016/j.heliyon.2018.e00938. es_ES
dc.description.references Eyercioglu, O., Kanca, E., Pala, M., and Ozbay, E. , “Prediction of Martensite and Austenite Start Temperatures of the Fe-Based Shape Memory Alloys by Artificial Neural Networks,” J. Mater. Process. Technol. 200(1-3):146-152, 2008, doi:10.1016/j.jmatprotec.2007.09.085. es_ES
dc.description.references Yang, I.H., Yeo, M.S., and Kim, K.W. , “Application of Artificial Neural Network to Predict the Optimal Start Time for Heating System in Building,” Energy Convers. Manag. 44(17):2791-2809, 2003, doi:10.1016/S0196-8904(03)00044-X. es_ES
dc.description.references Kalogirou, S.A. , “Artificial Neural Networks in Renewable Energy Systems Applications: A Review,” Renew. Sustain. Energy Rev. 5(4):373-401, 2000, doi:10.1016/S1364-0321(01)00006-5. es_ES
dc.description.references Yadav, A.K., and Chandel, S.S. , “Solar Radiation Prediction Using Artificial Neural Network Techniques: A Review,” Renew. Sustain. Energy Rev. 33:772-781, 2014, doi:10.1016/j.rser.2013.08.055. es_ES
dc.description.references Abhishek, K., Kumar, A., Ranjan, R., and Kumar, S. , “A Rainfall Prediction Model Using Artificial Neural Network,” in Proc. - 2012 IEEE Control Syst. Grad. Res. Colloquium, ICSGRC 2012 (Icsgrc):82-87, 2012, doi:10.1109/ICSGRC.2012.6287140. es_ES
dc.description.references Kara Togun, N., and Baysec, S. , “Prediction of torque and specific fuel consumption of a gasoline engine by using artificial neural networks,” Appl. Energy 87(1):349-355, 2010, doi:10.1016/j.apenergy.2009.08.016. es_ES
dc.description.references Deh Kiani, M.K., Ghobadian, B., Tavakoli, T., Nikbakht, A.M., and Najafi, G. , “Application of Artificial Neural Networks for the Prediction of Performance and Exhaust Emissions in SI Engine Using Ethanol-gasoline Blends,” Energy 35(1):65-69, 2010, doi:10.1016/j.energy.2009.08.034. es_ES
dc.description.references Roy, S., Banerjee, R., and Bose, P.K. , “Performance and Exhaust Emissions Prediction of a CRDI Assisted Single Cylinder Diesel Engine Coupled with EGR Using Artificial Neural Network,” Appl. Energy 119:330-340, 2014, doi:10.1016/j.apenergy.2014.01.044. es_ES
dc.description.references Çay, Y., Korkmaz, I., Çiçek, A., and Kara, F. , “Prediction of Engine Performance and Exhaust Emissions for Gasoline and Methanol Using Artificial Neural Network,” Energy 50(1):177-186, 2013, doi:10.1016/j.energy.2012.10.052. es_ES
dc.description.references Oǧuz, H., Saritas, I., and Baydan, H.E. , “Prediction of Diesel Engine Performance using Biofuels with Artificial Neural Network,” Expert Syst. Appl. 37(9):6579-6586, 2010, doi:10.1016/j.eswa.2010.02.128. es_ES
dc.description.references Tarabet, L., Lounici, M.S., Loubar, K., and Tazerout, M. , “Dual Wiebe Function Prediction of Eucalyptus Biodiesel/Diesel Fuel Blends Combustion in Diesel Engine Applying Artificial Neural Network,” SAE Technical Paper 2014-01-2555, 2014, https://doi.org/10.4271/2014-01-2555. es_ES
dc.description.references Payri, F., Olmeda, P., Martín, J., and García, A. , “A Complete 0D Thermodynamic Predictive Model for Direct Injection Diesel Engines,” Appl. Energy 88(12):4632-4641, 2011, doi:10.1016/j.apenergy.2011.06.005. es_ES
dc.description.references Lapuerta, M., Armas, O., and Hernández, J.J. , “Diagnosis of DI Diesel Combustion from In-Cylinder Pressure Signal by Estimation of Mean Thermodynamic Properties of the Gas,” Appl. Therm. Eng. 19(5):513-529, 1999, doi:10.1016/S1359-4311(98)00075-1. es_ES
dc.description.references Olmeda, P., Martín, J., Novella, R., and Carreño, R. , “An Adapted Heat Transfer Model for Engines with Tumble Motion,” Appl. Energy 158:190-202, 2015, doi:10.1016/j.apenergy.2015.08.051. es_ES
dc.description.references Broatch, A., Olmeda, P., García, A., Salvador-Iborra, J., and Warey, A. , “Impact of Swirl on In-Cylinder Heat Transfer in a Light-Duty Diesel Engine,” Energy 119:1010-1023, 2017, doi:10.1016/j.energy.2016.11.040. es_ES
dc.description.references Torregrosa, A., Olmeda, P., Degraeuwe, B., and Reyes, M. , “A Concise Wall Temperature Model for di Diesel Engines,” Appl. Therm. Eng. 26(11-12):1320-1327, 2006, doi:10.1016/j.applthermaleng.2005.10.021. es_ES
dc.description.references Cooney, C., Worm, J., Michalek, D., and Naber, J. , “Wiebe Function Parameter Determination for Mass Fraction Burn Calculation in an Ethanol-Gasoline Fuelled SI Engine,” J. KONES 15(3):567-574, 2008. es_ES
dc.description.references Serrano, J.R., Climent, H., Guardiola, C., and Piqueras, P. , “Methodology for Characterisation and Simulation of Turbocharged Diesel Engines Combustion During Transient Operation. Part 2: Phenomenological Combustion Simulation,” Appl. Therm. Eng. 29(1):150-158, 2009, doi:10.1016/j.applthermaleng.2008.02.010. es_ES
dc.description.references Yeliana, Y., Cooney, C., Worm, J., Michalek, D.J., and Naber, J.D. , “Estimation of Double-Wiebe Function Parameters Using Least Square Method for Burn Durations of Ethanol-Gasoline Blends in Spark Ignition Engine over Variable Compression Ratios and EGR Levels,” Appl. Therm. Eng. 31(14-15):2213-2220, 2011, doi:10.1016/j.applthermaleng.2011.01.040. es_ES
dc.description.references Yu, H. and Wilamowski, B.M. , “Levenberg-Marquardt Training,” Industrial Electronics Handbook, ISBN 10.1201/b10604: 12.1-12.16, 2011. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem