Mostrar el registro sencillo del ítem
dc.contributor.author | Pla Moreno, Benjamín | es_ES |
dc.contributor.author | Bares-Moreno, Pau | es_ES |
dc.contributor.author | Barbier, Alvin Richard Sebastien | es_ES |
dc.contributor.author | Guardiola, Carlos | es_ES |
dc.date.accessioned | 2022-12-16T08:09:11Z | |
dc.date.available | 2022-12-16T08:09:11Z | |
dc.date.issued | 2021-04-15 | es_ES |
dc.identifier.issn | 0148-7191 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/190756 | |
dc.description.abstract | [EN] Dual-fuel combustion engines have shown the potential to extend the operating range of Homogeneous Charge Compression Ignition (HCCI) by using several combustion modes, e.g. Reactivity Controlled Compression Ignition (RCCI) at low/medium load, and Partially Premixed Compression (PPC) at high load. In order to optimize the combustion mode operation, the respective sensitivity to the control inputs must be addressed. To this end, in this work the extremum seeking algorithm has been investigated. By definition, this technique allows to detect the control input authority over the system by perturbing its value by a known periodic signal. By analyzing the system response and calculating its gradient, the control input can be adjusted to reach optimal operation. This method has been applied to a dual-fuel engine under fully, highly and partially premixed conditions where the feedback information was provided by in-cylinder pressure and NOx sensors. The gasoline fraction and the injection timing were selected as control inputs and an extremum seeking controller was designed and verified to optimize brake efficiency by tracking the ideal combustion phasing and to reduce NOx emissions as well. | es_ES |
dc.description.sponsorship | The authors would like to recognize the financial support through Alvin Barbier's grant ACIF/2018/141, Programa Operativo del Fondo Social Europeo (FSE) de la Comunitat Valenciana 2014-2020. The authors also wish to thank Gabriel Alcantarilla for his assistance during the experimental campaign. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAE International | es_ES |
dc.relation.ispartof | SAE Technical Papers | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | On-Line Optimization of Dual-Fuel Combustion Operation by Extremum Seeking Techniques | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4271/2021-01-0519 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement///ACIF%2F2018%2F141//AYUDA PREDOCTORAL GVA-BARBIER/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Pla Moreno, B.; Bares-Moreno, P.; Barbier, ARS.; Guardiola, C. (2021). On-Line Optimization of Dual-Fuel Combustion Operation by Extremum Seeking Techniques. SAE International. 1-10. https://doi.org/10.4271/2021-01-0519 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | SAE World Congress Experience (WCX 2021) | es_ES |
dc.relation.conferencedate | Abril 13-15,2021 | es_ES |
dc.relation.conferenceplace | Online | es_ES |
dc.relation.publisherversion | https://doi.org/10.4271/2021-01-0519 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\435375 | es_ES |
dc.description.references | Alriksson, M. and Denbratt, I. , “Low Temperature Combustion in a Heavy Duty Diesel Engine Using High Levels of EGR,” SAE Technical Paper 2006-01-0075, 2006, https://doi.org/10.4271/2006-01-0075. | es_ES |
dc.description.references | Agarwal, A.K., Singh, A.P., and Maurya, R.K. , “Evolution, Challenges and Path Forward for Low Temperature Combustion Engines,” Prog. Energy Combust. Sci. 61:1-56, 2017, https://doi.org/10.1016/j.pecs.2017.02.001. | es_ES |
dc.description.references | Kokjohn, S.L., Hanson, R.M., Splitter, D.A., and Reitz, R.D. , “Fuel Reactivity Controlled Compression Ignition (RCCI): A Pathway to Controlled High-Efficiency Clean Combustion,” Int. J. Engine Res. 12:209-226, 2011, https://doi.org/10.1177/1468087411401548. | es_ES |
dc.description.references | Benajes, J., Garcia, A., Monsalve-Serrano, J., and Boronat, V. , “Achieving Clean and Efficient Engine Operation up to Full Load by Combining Optimized RCCI and Dual-Fuel Diesel-Gasoline Combustion Strategies,” Energy Convers. Manag. 136:142-151, 2017, https://doi.org/10.1016/j.enconman.2017.01.010. | es_ES |
dc.description.references | Paykani, A., Kakaee, A.-H., Rahnama, P., and Reitz, R.D. , “Progress and Recent Trends in Reactivity-Controlled Compression Ignition Engines,” Int. J. Engine Res. 17:481-524, 2016, https://doi.org/10.1177/1468087415593013. | es_ES |
dc.description.references | Li, J., Yang, W., and Zhou, D. , “Review on the Management of RCCI Engines,” Renew. Sustain. Energy Rev. 69:65-79, 2017, https://doi.org/10.1016/j.rser.2016.11.159. | es_ES |
dc.description.references | Reitz, R.D. and Duraisamy, G. , “Review of High Efficiency and Clean Reactivity Controlled Compression Ignition (RCCI) Combustion in Internal Combustion Engines,” Prog. Energy Combust. Sci. 46:12-71, 2015, https://doi.org/10.1016/j.pecs.2014.05.003. | es_ES |
dc.description.references | Benajes, J., García, A., Monsalve-Serrano, J., and Boronat, V. , “Gaseous Emissions and Particle Size Distribution of Dual-Mode Dual-Fuel Diesel-Gasoline Concept from Low to Full Load,” Appl. Therm. Eng. 120:138-149, 2017, https://doi.org/10.1016/j.applthermaleng.2017.04.005. | es_ES |
dc.description.references | García, A., Monsalve-Serrano, J., Villalta, D., and Lago Sari, R. , “Performance of a Conventional Diesel Aftertreatment System used in a Medium-Duty Multi-Cylinder Dual-Mode Dual-Fuel Engine,” Energy Convers. Manag. 184:327-337, 2019, https://doi.org/10.1016/j.enconman.2019.01.069. | es_ES |
dc.description.references | Johnson, T.V. , “Review of Diesel Emissions and Control,” Int. J. Engine Res. 10:275-285, 2009, https://doi.org/10.1243/14680874JER04009. | es_ES |
dc.description.references | Praveena, V. and Martin, M.L.J. , “A Review on Various After Treatment Techniques to Reduce NOx Emissions in a CI Engine,” J. Energy Inst. 91:704-720, 2018, https://doi.org/10.1016/j.joei.2017.05.010. | es_ES |
dc.description.references | Hsieh, M.-F. and Wang, J. , “Design and Experimental Validation of an Extended Kalman Filter-Based NOx Concentration Estimator in Selective Catalytic Reduction System Applications,” Control Eng. Pract. 19:346-353, 2011, https://doi.org/10.1016/j.conengprac.2010.12.002. | es_ES |
dc.description.references | Pla, B., Bares, P., Sanchis, E., and Aronis, A. , “Ammonia Injection Optimization for Selective Catalytic Reduction Aftertreatment Systems,” Int. J. Engine Res., 2020, https://doi.org/10.1177/1468087420933125. | es_ES |
dc.description.references | Arora, J.K. and Shahbakhti, M. , “Real-Time Closed-Loop Control of a Light-Duty RCCI Engine During Transient Operations,” SAE Technical Paper 2017-01-0767, 2017, https://doi.org/10.4271/2017-01-0767.Copyright. | es_ES |
dc.description.references | Guardiola, C., Pla, B., Bares, P., and Barbier, A. , “Closed-Loop Control of a Dual-Fuel Engine Working with Different Combustion Modes using In-Cylinder Pressure Feedback,” Int. J. Engine Res., 2019, https://doi.org/10.1177/1468087419835327. | es_ES |
dc.description.references | Jorques Moreno, C., Stenlaas, O. and Tunestal, P. , “In-Cycle Closed-Loop Combustion Control for Pilot Misfire Compensation,” SAE Technical Paper 2020-01-2086, 2020, 1-13, https://doi.org/10.4271/2020-01-2086. | es_ES |
dc.description.references | Tan, Y., Moase, W.H., Manzie, C., Nešić, D. and Mareels, I.M.Y. , “Extremum Seeking from 1922 to 2010,” in Proc. 29th Chinese Control Conf. CCC’10, 2010, 14-26. | es_ES |
dc.description.references | Zurbriggen, F., Hutter, R., and Onder, C. , “Diesel-Minimal Combustion Control of a Natural Gas-Diesel Engine,” Energies 9, 2016, https://doi.org/10.3390/en9010058. | es_ES |
dc.description.references | Wang, W., Li, Y., and Hu, B. , “Real-Time Efficiency Optimization of a Cascade Heat Pump System via Multivariable Extremum Seeking,” Appl. Therm. Eng. 176:115399, 2020, https://doi.org/10.1016/j.applthermaleng.2020.115399. | es_ES |
dc.description.references | Kumar, S., Mohammadi, A., Quintero, D., Rezazadeh, S. et al. , “Extremum Seeking Control for Model-Free Auto-Tuning of Powered Prosthetic Legs,” IEEE Trans. Control Syst. Technol. 28:2120-2135, 2020, https://doi.org/10.1109/TCST.2019.2928514. | es_ES |
dc.description.references | Hellstrom, E., Lee, D., Jiang, L., Stefanopoulou, A.G., and Yilmaz, H. , “On-Board Calibration of Spark Timing by Extremum Seeking for Flex-Fuel Engines,” IEEE Trans. Control Syst. Technol. 21:2273-2279, 2013, https://doi.org/10.1109/TCST.2012.2236093. | es_ES |
dc.description.references | Zhang, Y. and Shen, T. , “Cylinder Pressure Based Combustion Phase Optimization and Control in Spark-Ignited Engines,” Control Theory Technol. 15:83-91, 2017, doi:10.1007/s12239−017−0092−7. https://doi.org/DOI. | es_ES |
dc.description.references | Novella, R., Pla, B., Bares, P., and Martinez-Hernandiz, P.J. , “Closed-Loop Combustion Control by Extremum Seeking with the Passive-Chamber Ignition Concept in SI Engines,” SAE Technical Paper 2020-01-1142 1-11, 2020, https://doi.org/10.4271/2020-01-1142. | es_ES |
dc.description.references | Lewander, M., Widd, A., Johansson, B., and Tunestal, P. , “Steady State Fuel Consumption Optimization through Feedback Control of Estimated Cylinder Individual Efficiency, 2012 Am,” Control Conf. 4210-4214, 2014, https://doi.org/10.1109/acc.2012.6315075. | es_ES |
dc.description.references | van der Weijst, R., van Keulen, T., and Willems, F. , “Constrained Multivariable Extremum-Seeking for Online Fuel-Efficiency Optimization of Diesel Engines,” Control Eng. Pract. 87:133-144, 2019, https://doi.org/10.1016/j.conengprac.2019.03.008. | es_ES |
dc.description.references | Tan, Q., Divekar, P.S., Tan, Y., Chen, X., and Zheng, M. , “Pressure Sensor Data-Driven Optimization of Combustion Phase in a Diesel Engine,” IEEE/ASME Trans. Mechatronics. 25:694-704, 2020, https://doi.org/10.1109/TMECH.2020.2967874. | es_ES |
dc.description.references | Brunt, M.F.J. and Pond, C.R. , “Evaluation of Techniques for Absolute Cylinder Pressure Correction,” SAE Technical Paper 970036, 1997, https://doi.org/10.4271/970036. | es_ES |
dc.description.references | Krstić, M. and Wang, H.-H. , “Stability of Extremum Seeking Feedback for General Nonlinear Dynamic Systems,” Automatica 36:595-601, 2000, https://doi.org/10.1016/S0005-1098(99)00183-1. | es_ES |
dc.description.references | Dochain, D., Perrier, M., and Guay, M. , “Extremum Seeking Control and its Application to Process and Reaction Systems: A Survey,” Math. Comput. Simul. 82:369-380, 2011, https://doi.org/10.1016/j.matcom.2010.10.022. | es_ES |
dc.description.references | Atta, K.T. and Guay, M. , “Adaptive Amplitude Fast Proportional Integral Phasor Extremum Seeking Control for a Class of Nonlinear System,” J. Process Control. 83:147-154, 2019, https://doi.org/10.1016/j.jprocont.2018.10.006. | es_ES |
dc.description.references | Blanco-Rodriguez, D. , Modelling and Observation of Exhaust Gas Concentrations for Diesel Engine Control (Cham: Springer International Publishing, 2014). https://doi.org/10.1007/978-3-319-06737-7. | es_ES |
dc.description.references | Aquino, C.F. , “Transient A/F Control Characteristics of the 5 Liter Central Fuel Injection Engine,” SAE Technical Paper 810494, 1981, https://doi.org/10.4271/810494. | es_ES |