- -

Influence of diet and feeding strategy on the performance of nitrifying trickling filter, oxygen consumption and ammonia excretion of gilthead sea bream (Sparus aurata) raised in recirculating aquaculture systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of diet and feeding strategy on the performance of nitrifying trickling filter, oxygen consumption and ammonia excretion of gilthead sea bream (Sparus aurata) raised in recirculating aquaculture systems

Mostrar el registro completo del ítem

Godoy-Olmos, S.; Jauralde García, I.; Monge-Ortiz, R.; Milián Sorribes, MC.; Jover Cerda, M.; Tomas-Vidal, A.; Martínez-Llorens, S. (2022). Influence of diet and feeding strategy on the performance of nitrifying trickling filter, oxygen consumption and ammonia excretion of gilthead sea bream (Sparus aurata) raised in recirculating aquaculture systems. Aquaculture International. 30(2):581-606. https://doi.org/10.1007/s10499-021-00821-3

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/190839

Ficheros en el ítem

Metadatos del ítem

Título: Influence of diet and feeding strategy on the performance of nitrifying trickling filter, oxygen consumption and ammonia excretion of gilthead sea bream (Sparus aurata) raised in recirculating aquaculture systems
Autor: Godoy-Olmos, Sergio Jauralde García, Ignacio Monge-Ortiz, Raquel Milián Sorribes, María Consolación Jover Cerda, Miguel Tomas-Vidal, A. Martínez-Llorens, Silvia
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia
Fecha difusión:
Resumen:
[EN] Gilthead sea bream (Sparus aurata) was raised in six individual recirculating aquaculture systems (RAS) whose bioflters¿ performance was analyzed. Fish were fed with three diferent diets (a control diet, a fshmeal-based ...[+]
Palabras clave: Recirculating aquaculture systems , Trickling filter , Oxygen consumption , Ammonia excretion , Feeding strategy , Sparus aurata
Derechos de uso: Reconocimiento (by)
Fuente:
Aquaculture International. (issn: 0967-6120 )
DOI: 10.1007/s10499-021-00821-3
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s10499-021-00821-3
Código del Proyecto:
info:eu-repo/grantAgreement/GV INNOV.UNI.CIENCIA//IDIFEDER%2F2020%2F029//ADQUISICION DE UN CROMATOGRAFO UHPLC: HACIA UNA PRODUCCION ANIMAL ECOLOGICA/
Agradecimientos:
Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. Research is funded by the national project ¿Design of a recirculating aquaculture system for aquaculture plants (2011¿2014),¿ by the ...[+]
Tipo: Artículo

References

Azzaydi M, Madrid JA, Zamora S et al (1998) Effect of three feeding strategies (automatic, ad libitum demand-feeding and time-restricted demand-feeding) on feeding rhythms and growth in European sea bass (Dicentrarchus labrax L.). Aquaculture 163:285–296. https://doi.org/10.1016/S0044-8486(98)00238-5

Ballestrazzi R, Lanari D, D’Agaro E, Mion A (1994) The effect of dietary protein level and source on growth, body composition, total ammonia and reactive phosphate excretion of growing sea bass (Dicentrarchus labrax). Aquaculture 127:197–206. https://doi.org/10.1016/0044-8486(94)90426-X

Berge GE, Goodman M, Espe M, Lied E (2004) Intestinal absorption of amino acids in fish: kinetics and interaction of the in vitro uptake of l-methionine in Atlantic salmon (Salmo salar L.). Aquaculture 229:265–273. https://doi.org/10.1016/S0044-8486(03)00355-7 [+]
Azzaydi M, Madrid JA, Zamora S et al (1998) Effect of three feeding strategies (automatic, ad libitum demand-feeding and time-restricted demand-feeding) on feeding rhythms and growth in European sea bass (Dicentrarchus labrax L.). Aquaculture 163:285–296. https://doi.org/10.1016/S0044-8486(98)00238-5

Ballestrazzi R, Lanari D, D’Agaro E, Mion A (1994) The effect of dietary protein level and source on growth, body composition, total ammonia and reactive phosphate excretion of growing sea bass (Dicentrarchus labrax). Aquaculture 127:197–206. https://doi.org/10.1016/0044-8486(94)90426-X

Berge GE, Goodman M, Espe M, Lied E (2004) Intestinal absorption of amino acids in fish: kinetics and interaction of the in vitro uptake of l-methionine in Atlantic salmon (Salmo salar L.). Aquaculture 229:265–273. https://doi.org/10.1016/S0044-8486(03)00355-7

Bremer Neto H, Graner CAF, Pezzato LE, Padovani CR (2005) Determinação de rotina do crômio em fezes, como marcador biológico, pelo método espectrofotométrico ajustado da 1,5-difenilcarbazida. Ciência Rural 35:691–697. https://doi.org/10.1590/S0103-84782005000300033

Brouwer E (1965) Report of subcommittee on constants and factors energy metabolism. Publ Eur Assoc Anim Prod 11:441–443

Cai Y, Summerfelt RC (1992) Effects of temperature and size on oxygen consumption and ammonia excretion by walleye. Aquaculture 104:127–138. https://doi.org/10.1016/0044-8486(92)90143-9

Cerezo Valverde J, Garcı́a Garcı́a B (2004) Influence of body weight and temperature on post-prandial oxygen consumption of common octopus (Octopus vulgaris). Aquaculture 233:599–613. https://doi.org/10.1016/J.AQUACULTURE.2003.11.025

Cheng ZJ, Hardy RW, Usry JL (2003) Plant protein ingredients with lysine supplementation reduce dietary protein level in rainbow trout (Oncorhynchus mykiss) diets, and reduce ammonia nitrogen and soluble phosphorus excretion. Aquaculture 218:553–565. https://doi.org/10.1016/S0044-8486(02)00502-1

Cho CY, Kaushik SJ (1990) Nutritional energetics in fish: energy and protein utilization in rainbow trout (Salmo gairdneri). World Rev Nutr Diet 61:132–172. https://doi.org/10.1159/000417529

Colt J (2006) Water quality requirements for reuse systems. Aquac Eng 34:143–156. https://doi.org/10.1016/j.aquaeng.2005.08.011

Cutts CJ, Metcalfe NB, Taylor AC (1998) Aggression and growth depression in juvenile Atlantic salmon: the consequences of individual variation in standard metabolic rate. J Fish Biol 52:1026–1037. https://doi.org/10.1006/jfbi.1998.0647

Dalsgaard J, Larsen BK, Pedersen PB (2015) Nitrogen waste from rainbow trout (Oncorhynchus mykiss) with particular focus on urea. Aquac Eng 65:2–9. https://doi.org/10.1016/j.aquaeng.2014.10.004

Dalsgaard J, Pedersen PB (2011) Solid and suspended/dissolved waste (N, P, O) from rainbow trout (Oncorynchus mykiss). Aquaculture 313:92–99. https://doi.org/10.1016/j.aquaculture.2011.01.037

Davidson J, Barrows FT, Kenney PB et al (2016) Effects of feeding a fishmeal-free versus a fishmeal-based diet on post-smolt Atlantic salmon Salmo salar performance, water quality, and waste production in recirculation aquaculture systems. Aquac Eng 74:38–51. https://doi.org/10.1016/j.aquaeng.2016.05.004

Davidson J, Good C, Barrows FT et al (2013) Comparing the effects of feeding a grain- or a fish meal-based diet on water quality, waste production, and rainbow trout Oncorhynchus mykiss performance within low exchange water recirculating aquaculture systems. Aquac Eng 52:45–57. https://doi.org/10.1016/j.aquaeng.2012.08.001

Díaz V, Ibáñez R, Gómez P et al (2012) Kinetics of nitrogen compounds in a commercial marine recirculating aquaculture system. Aquac Eng 50:20–27. https://doi.org/10.1016/j.aquaeng.2012.03.004

Dosdat A, Servais F, Métailler R et al (1996) Comparison of nitrogenous losses in five teleost fish species. Aquaculture 141:107–127. https://doi.org/10.1016/0044-8486(95)01209-5

Echevarría G, Zarauz N, López-Ruiz J, Zamora S (1993) Study of nitrogen excretion in the gilthead seabream (Sparus aurata l.): influence of nutritional state. Comp Biochem Physiol Part A Physiol 105:17–19. https://doi.org/10.1016/0300-9629(93)90167-3

Eding EH, Kamstra A, Verreth JAJ et al (2006) Design and operation of nitrifying trickling filters in recirculating aquaculture: a review. Aquac Eng 34:234–260. https://doi.org/10.1016/j.aquaeng.2005.09.007

Engin K, Tufan Eroldoǧan O, Özşahinoǧlu I et al (2013) Diurnal ammonia and urea excretion rates in European sea bass, Dicentrarchus labrax fed diets containing mixtures of canola and cotton seed oil at two different ambient temperature. J Therm Biol 38:588–596. https://doi.org/10.1016/j.jtherbio.2013.10.004

Estruch G, Tomás-Vidal A, El Nokrashy AM et al (2018) Inclusion of alternative marine by-products in aquafeeds with different levels of plant-based sources for on-growing gilthead sea bream (Sparus aurata, L.): effects on digestibility, amino acid retention, ammonia excretion and enzyme activity. Arch Anim Nutr 72:321–339. https://doi.org/10.1080/1745039X.2018.1472408

Fagbenro O, Jauncey K (1995) Water stability, nutrient leaching and nutritional properties of moist fermented fish silage diets. Aquac Eng. https://doi.org/10.1016/0144-8609(94)P4432-B

Fernandes P, Pedersen LF, Pedersen PB (2015) Microscreen effects on water quality in replicated recirculating aquaculture systems. Aquac Eng 65:17–26. https://doi.org/10.1016/j.aquaeng.2014.10.007

Foss A, Imsland AK, Roth B et al (2009) Effects of chronic and periodic exposure to ammonia on growth and blood physiology in juvenile turbot (Scophthalmus maximus). Aquaculture 296:45–50. https://doi.org/10.1016/j.aquaculture.2009.07.013

Francis G, Makkar HP, Becker K (2001) Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199:197–227. https://doi.org/10.1016/S0044-8486(01)00526-9

García-García BJ, Cerezo Valverde J, Gómez E, Hernández MD, Aguado-Giménez F (2011) Ammonia excretion of octopus (Octopus vulgaris) in relation to body weight and protein intake. Aquaculture 319:162–167. https://doi.org/10.1016/j.aquaculture.2011.06.017

Gallego-Alarcón I, García-Pulido D (2017) Remoción de nitrógeno amoniacal total en un biofiltro: percolador-columna de arena. Tecnol y ciencias del agua 08:81–93. https://doi.org/10.24850/j-tyca-2017-01-06

Godoy-Olmos S, Martínez-Llorens S, Tomás-Vidal A et al (2019) Influence of temperature, ammonia load and hydraulic loading on the performance of nitrifying trickling filters for recirculating aquaculture systems. J Environ Chem Eng 7:103257. https://doi.org/10.1016/J.JECE.2019.103257

Godoy-Olmos S, Martínez-Llorens S, Tomás-Vidal A, Jover-Cerdá M (2016) Influence of filter medium type, temperature and ammonia production on nitrifying trickling filters performance. J Environ Chem Eng 4:328–340. https://doi.org/10.1016/j.jece.2015.11.023

Gómez-Requeni P, Mingarro M, Calduch-Giner JA et al (2004) Protein growth performance, amino acid utilisation and somatotropic axis responsiveness to fish meal replacement by plant protein sources in gilthead sea bream (Sparus aurata). Aquaculture 232:493–510. https://doi.org/10.1016/S0044-8486(03)00532-5

Guinea J, Fernandez F (1997) Effect of feeding frequency, feeding level and temperature on energy metabolism in Sparus aurata. Aquaculture 148:125–142. https://doi.org/10.1016/S0044-8486(96)01424-X

Henze M, Harremoës P, Jansen JLC, Arvin E (2002) Wastewater treatment. Biological and chemical processes, 3rd edn. Springer, Germany

Hoyos JL, Villada HS, Fernández A, Ortega-Toro R (2017) Parámetros de Calidad y Metodologías para Determinar las Propiedades Físicas de Alimentos Extruidos para Peces. Inf Tecnológica 28:101–114. https://doi.org/10.4067/s0718-07642017000500012

Kajimura M, Croke SJ, Glover CN, Wood CM (2004) Dogmas and controversies in the handling of nitrogenous wastes: the effect of feeding and fasting on the excretion of ammonia, urea and other nitrogenous waste products in rainbow trout. J Exp Biol 207:1993–2002. https://doi.org/10.1242/jeb.00901

Kaushik SJ (1998) Nutritional bioenergetics and estimation of waste production in non-salmonids. Aquat Living Resour 11:211–217. https://doi.org/10.1016/S0990-7440(98)89003-7

Kokou F, Fountoulaki E (2018) Aquaculture waste production associated with antinutrient presence in common fish feed plant ingredients. Aquaculture 495:295–310. https://doi.org/10.1016/J.AQUACULTURE.2018.06.003

Leung KMY, Chu JCW, Wu RSS (1999) Effects of body weight, water temperature and ration size on ammonia excretion by the areolated grouper (Epinephelus areolatus) and mangrove snapper (Lutjanus argentimaculatus). Aquaculture 170:215–227. https://doi.org/10.1016/S0044-8486(98)00404-9

Liao PB, Mayo RD (1972) Salmonid hatchery water reuse systems. Aquaculture 1:317–335. https://doi.org/10.1016/0044-8486(72)90033-6

Lyssenko C, Wheaton F (2006) Impact of rapid impulse operating disturbances on ammonia removal by trickling and submerged-upflow biofilters for intensive recirculating aquaculture. Aquac Eng 35:38–50. https://doi.org/10.1016/j.aquaeng.2005.08.001

Martínez-Llorens S, Baeza-Ariño R, Nogales-Mérida S et al (2012) Carob seed germ meal as a partial substitute in gilthead sea bream (Sparus aurata) diets: amino acid retention, digestibility, gut and liver histology. Aquaculture 338–341:124–133. https://doi.org/10.1016/J.AQUACULTURE.2012.01.029

Michaud L, Blancheton JP, Bruni V, Piedrahita R (2006) Effect of particulate organic carbon on heterotrophic bacterial populations and nitrification efficiency in biological filters. Aquac Eng 34:224–233. https://doi.org/10.1016/j.aquaeng.2005.07.005

Mihelakakis A, Tsolkas C, Yoshimatsu T (2002) Optimization of feeding rate for hatchery-produced juvenile gilthead sea bream (Sparus aurata). J World Aquac Soc 33:169–175. https://doi.org/10.1111/j.1749-7345.2002.tb00491.x

Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71. https://doi.org/10.1006/niox.2000.0319

Monge-Ortiz R, Martínez-Llorens S, Márquez L et al (2016) Potential use of high levels of vegetal proteins in diets for market-sized gilthead sea bream (Sparus aurata). Arch Anim Nutr 70:155–172. https://doi.org/10.1080/1745039X.2016.1141743

Monge-Ortiz R, Tomás-Vidal A, Gallardo-Álvarez FJ et al (2018) Partial and total replacement offishmeal by a blend of animal and plant proteins in diets for Seriola dumerili: effects on performance and nutrient efficiency. Aquacult Nutr 24:1163–1174. https://doi.org/10.1111/anu.12655

Morales GA, Azcuy RL, Casaretto ME et al (2018) Effect of different inorganic phosphorus sources on growth performance, digestibility, retention efficiency and discharge of nutrients in rainbow trout (Oncorhynchus mykiss). Aquaculture. https://doi.org/10.1016/j.aquaculture.2018.06.036

Obirikorang KA, Amisah S, Fialor SC, Skov PV (2015) Digestibility and postprandial ammonia excretion in Nile tilapia (Oreochromis niloticus) fed diets containing different oilseed by-products. Aquac Int 23:1249–1260. https://doi.org/10.1007/s10499-015-9881-z

Pedersen LF, Suhr KI, Dalsgaard J et al (2012) Effects of feed loading on nitrogen balances and fish performance in replicated recirculating aquaculture systems. Aquaculture 338–341:237–245. https://doi.org/10.1016/j.aquaculture.2012.01.035

Pedrosa RU, Mattos BO, Pereira DSP et al (2019) Effects of feeding strategies on growth, biochemical parameters and waste excretion of juvenile arapaima (Arapaima gigas) raised in recirculating aquaculture systems (RAS). Aquaculture 500:562–568. https://doi.org/10.1016/j.aquaculture.2018.10.058

Piedrahita RH (2003) Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture 226:35–44. https://doi.org/10.1016/S0044-8486(03)00465-4

Salvetti R, Azzellino A, Canziani R, Bonomo L (2006) Effects of temperature on tertiary nitrification in moving-bed biofilm reactors. Water Res 40:2981–2993. https://doi.org/10.1016/j.watres.2006.05.013

Santigosa E, Sánchez J, Médale F et al (2008) Modifications of digestive enzymes in trout (Oncorhynchus mykiss) and sea bream (Sparus aurata) in response to dietary fish meal replacement by plant protein sources. Aquaculture 282:68–74. https://doi.org/10.1016/J.AQUACULTURE.2008.06.007

Schnetger B, Lehners C (2014) Determination of nitrate plus nitrite in small volume marine water samples using vanadium(III) chloride as a reduction agent. Mar Chem 160:91–98. https://doi.org/10.1016/j.marchem.2014.01.010

Sitjà-Bobadilla A, Peña-Llopis S, Gómez-Requeni P et al (2005) Effect of fish meal replacement by plant protein sources on non-specific defence mechanisms and oxidative stress in gilthead sea bream (Sparus aurata). Aquaculture 249:387–400. https://doi.org/10.1016/J.AQUACULTURE.2005.03.031

Steinarsson A, Moksness E (1996) Oxygen consumption and ammonia excretion of common wolffish Anarhichas lupus (Linnaeus, 1758) in an experimental-scale, seawater, land-based culture system. Aquac Res 27:925–929. https://doi.org/10.1111/j.1365-2109.1996.tb01252.x

von Ahnen M, Pedersen LF, Pedersen PB, Dalsgaard J (2015) Degradation of urea, ammonia and nitrite in moving bed biofilters operated at different feed loadings. Aquac Eng 69:50–59. https://doi.org/10.1016/j.aquaeng.2015.10.004

Wagner EI, Miller SA, Bosakowski T (1995) Ammonia excretion by rainbow trout over a 24-hour period at two densities during oxygen injection. Progress Fish-Culturist 57:199–205. https://doi.org/10.1577/1548-8640(1995)057%3c0199:AEBRTO%3e2.3.CO;2

Wood CM (2001) Influence of feeding, exercise and temperature on nitrogen metabolism and excretion. Fish Physiology Volume 20: On Nitrogen Excretion. Academic Press, London, pp 201–238

Wu X, Gatlin DM (2014) Effects of altering dietary protein content in morning and evening feedings on growth and ammonia excretion of red drum (Sciaenops ocellatus). Aquaculture 434:33–37. https://doi.org/10.1016/j.aquaculture.2014.07.019

Zhu S, Chen S (1999) An experimental study on nitrification biofilm performances using a series reactor system. Aquac Eng 20:245–259. https://doi.org/10.1016/S0144-8609(99)00019-9

Zhu S, Chen S (2001) Effects of organic carbon on nitrification rate in fixed fillm biofilters. Aquac Eng 25:221–237. https://doi.org/10.1016/S0144-8609(01)00071-1

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem