- -

Engineered living biomaterials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Engineered living biomaterials

Mostrar el registro completo del ítem

Rodrigo-Navarro, A.; Sankaran, S.; Dalby, MJ.; Del Campo, A.; Salmerón Sánchez, M. (2021). Engineered living biomaterials. Nature Reviews Materials. 6(12):1175-1190. https://doi.org/10.1038/s41578-021-00350-8

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/190867

Ficheros en el ítem

Metadatos del ítem

Título: Engineered living biomaterials
Autor: Rodrigo-Navarro, Aleixandre Sankaran, Shrikrishnan Dalby, Matthew J. del Campo, Aránzazu Salmerón Sánchez, Manuel
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Fecha difusión:
Resumen:
[EN] Biomaterials have evolved from inert materials that lack interaction with the body to biologically active, instructive materials that host and provide signals to surrounding cells and tissues. Engineered living materials ...[+]
Derechos de uso: Cerrado
Fuente:
Nature Reviews Materials. (eissn: 2058-8437 )
DOI: 10.1038/s41578-021-00350-8
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/s41578-021-00350-8
Código del Proyecto:
info:eu-repo/grantAgreement/DFG//SFB 1027/
info:eu-repo/grantAgreement/EPSRC//EP%2FP001114%2F1/
info:eu-repo/grantAgreement/UKRMP//MR%2FR015651%2F1/
Agradecimientos:
Support from EPSRC through a programme grant (EP/P001114/1) is acknowledged. M.S.-S. and M.J.D acknowledge support from a grant from the UK Regenerative Medicine Platform "Acellular/Smart Materials - 3D Architecture" ...[+]
Tipo: Artículo

References

Marth, J. D. A unified vision of the building blocks of life. Nat. Cell Biol. 10, 1015–1015 (2008).

Rossi, E., Paroni, M. & Landini, P. Biofilm and motility in response to environmental and host-related signals in Gram negative opportunistic pathogens. J. Appl. Microbiol. 125, 1587–1602 (2018).

Yin, W., Wang, Y., Liu, L. & He, J. Biofilms: the microbial “protective clothing” in extreme environments. Int. J. Mol. Sci. 20, 3423 (2019). [+]
Marth, J. D. A unified vision of the building blocks of life. Nat. Cell Biol. 10, 1015–1015 (2008).

Rossi, E., Paroni, M. & Landini, P. Biofilm and motility in response to environmental and host-related signals in Gram negative opportunistic pathogens. J. Appl. Microbiol. 125, 1587–1602 (2018).

Yin, W., Wang, Y., Liu, L. & He, J. Biofilms: the microbial “protective clothing” in extreme environments. Int. J. Mol. Sci. 20, 3423 (2019).

Karin, M. & Clevers, H. Reparative inflammation takes charge of tissue regeneration. Nature 529, 307–315 (2016).

Nguyen, P. Q., Courchesne, N.-M. D., Duraj-Thatte, A., Praveschotinunt, P. & Joshi, N. S. Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials. Adv. Mater. 30, e1704847 (2018).

Gona, R. S. & Meyer, A. S. Engineered proteins and three-dimensional printing of living materials. MRS Bull. 45, 1034–1038 (2020).

Gilbert, C. & Ellis, T. Biological engineered living materials: growing functional materials with genetically programmable properties. ACS Synth. Biol. 8, 1–15 (2019). Excellent review on applications of living biomaterials beyond medical applications.

Appiah, C. et al. Living materials herald a new era in soft robotics. Adv. Mater. 31, 1807747 (2019).

Rivera-Tarazona, L. K., Campbell, Z. T. & Ware, T. H. Stimuli-responsive engineered living materials. Soft Matter 17, 785–809 (2021).

Tang, T.-C. et al. Materials design by synthetic biology. Nat. Rev. Mater. 6, 332–350 (2021).

Branda, S. S., Vik, Å., Friedman, L. & Kolter, R. Biofilms: the matrix revisited. Trends Microbiol. 13, 20–26 (2005).

Flemming, H.-C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).

Tolker-Nielsen, T. Biofilm development. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.MB-0001-2014 (2015).

Liu, X. et al. 3D printing of living responsive materials and devices. Adv. Mater. 30, 1704821 (2018). 3D printing of living materials to implement logic gates using programmed bacteria in hydrogels.

Brophy, J. A. N. & Voigt, C. A. Principles of genetic circuit design. Nat. Methods 11, 508–520 (2014).

Gilman, J. & Love, J. Synthetic promoter design for new microbial chassis. Biochem. Soc. Trans. 44, 731–737 (2016).

Fierke, C. A. & Thompson, R. B. Fluorescence-based biosensing of zinc using carbonic anhydrase. Biometals 14, 205–222 (2001).

Zeng, H. H. et al. Real-time determination of picomolar free Cu(II) in seawater using a fluorescence-based fiber optic biosensor. Anal. Chem. 75, 6807–6812 (2003).

Begam, H., Nandi, S. K., Kundu, B. & Chanda, A. Strategies for delivering bone morphogenetic protein for bone healing. Mater. Sci. Eng. C. 70, 856–869 (2017).

Bally, L., Thabit, H. & Hovorka, R. Finding the right route for insulin delivery – an overview of implantable pump therapy. Expert Opin. Drug Deliv. 14, 1103–1111 (2017).

van Wamelen, D. J., Grigoriou, S., Chaudhuri, K. R. & Odin, P. Continuous drug delivery aiming continuous dopaminergic stimulation in Parkinson’s disease. J. Parkinsons. Dis. 8, S65–S72 (2018).

Batista, E. et al. Assessment of drug delivery devices. Biomed. Tech. 60, 347–357 (2015).

Hay, J. J. et al. Bacteria-based materials for stem cell engineering. Adv. Mater. 30, 1804310 (2018). Engineered bacteria that expresses fibronectin fragments and growth factors to support mesenchymal stem cell adhesion and differentiation.

González, L. M., Mukhitov, N. & Voigt, C. A. Resilient living materials built by printing bacterial spores. Nat. Chem. Biol. 16, 126–133 (2020). Highly resilient bacterial hydrogels containing Bacillus subtilis spores capable of biosensing and therapeutic functions are described in this report.

Lufton, M. et al. Living bacteria in thermoresponsive gel for treating fungal infections. Adv. Funct. Mater. 28, 1801581 (2018).

Praveschotinunt, P. et al. Engineered E. coli Nissle 1917 for the delivery of matrix-tethered therapeutic domains to the gut. Nat. Commun. 10, 5580 (2019). Engineered protein-based bacterial biofilms as therapeutic living materials capable of colonizing and promoting regeneration of intestinal tissues in colitis-induced mice.

An, B. et al. Programming living glue systems to perform autonomous mechanical repairs. Matter 3, 2080–2092 (2020).

Gerber, L. C., Koehler, F. M., Grass, R. N. & Stark, W. J. Incorporation of penicillin-producing fungi into living materials to provide chemically active and antibiotic-releasing surfaces. Angew. Chem. Int. Ed. 51, 11293–11296 (2012).

Sankaran, S. & del Campo, A. Optoregulated protein release from an engineered living material. Adv. Biosyst. 3, 1800312 (2019).

Sankaran, S., Becker, J., Wittmann, C. & del Campo, A. Optoregulated drug release from an engineered living material: self-replenishing drug depots for long-term, light-regulated delivery. Small 15, 1804717 (2019). Bacterial hydrogels have been developed for the localized, tunable and long-term release of an antimicrobial/antitumour drug, deoxyviolacein, in a manner that can be regulated by light.

Johnston, T. G. et al. Compartmentalized microbes and co-cultures in hydrogels for on-demand bioproduction and preservation. Nat. Commun. 11, 563 (2020).

Schotte, L., Steidler, L., Vandekerckhove, J. & Remaut, E. Secretion of biologically active murine interleukin-10 by Lactococcus lactis. Enzym. Microb. Technol. 27, 761–765 (2000).

van der Hoek, S. A. et al. Engineering the yeast Saccharomyces cerevisiae for the production of L-(+)-ergothioneine. Front. Bioeng. Biotechnol. 7, 262 (2019).

Karkos, P. D., Leong, S. C., Karkos, C. D., Sivaji, N. & Assimakopoulos, D. A. Spirulina in clinical practice: evidence-based human applications. Evid. Based Complement. Altern. Med. 2011, 531053 (2011).

Sharifi-Rad, J. et al. Probiotics: versatile bioactive components in promoting human health. Medicina 56, 433 (2020).

Markowiak, P. & Śliżewska, K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 9, 1021 (2017).

Parvez, S., Malik, K. A., Ah Kang, S. & Kim, H.-Y. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 100, 1171–1185 (2006).

Acosta, S. et al. Antifungal films based on starch-gelatin blend, containing essential oils. Food Hydrocoll. 61, 233–240 (2016).

Li, S. et al. Cassava starch/carboxymethylcellulose edible films embedded with lactic acid bacteria to extend the shelf life of banana. Carbohydr. Polym. 248, 116805 (2020).

De Prisco, A. & Mauriello, G. Probiotication of foods: A focus on microencapsulation tool. Trends Food Sci. Technol. 48, 27–39 (2016).

Bourtoom, T. Edible films and coatings: characteristics and properties. Int. Food Res. J. 15, 237–248 (2008).

Rojas-Graü, M. A., Soliva-Fortuny, R. & Martín-Belloso, O. Edible coatings to incorporate active ingredients to fresh-cut fruits: a review. Trends Food Sci. Technol. 20, 438–447 (2009).

Valencia-Chamorro, S. A., Palou, L., del Río, M. A. & Pérez-Gago, M. B. Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: a review. Crit. Rev. Food Sci. Nutr. 51, 872–900 (2011).

Corrales, M., Han, J. H. & Tauscher, B. Antimicrobial properties of grape seed extracts and their effectiveness after incorporation into pea starch films. Int. J. Food Sci. Technol. 44, 425–433 (2009).

Tapia, M. S. et al. Use of alginate- and gellan-based coatings for improving barrier, texture and nutritional properties of fresh-cut papaya. Food Hydrocoll. 22, 1493–1503 (2008).

Suput, D., Lazic, V., Popovic, S. & Hromis, N. Edible films and coatings: Sources, properties and application. Food Feed. Res. 42, 11–22 (2015).

Ozyurt, V. H. & Ötles, S. Properties of probiotics and encapsulated probiotics in food. Acta Sci. Pol. Technol. Aliment. 13, 413–424 (2014).

Maxmen, A. Living therapeutics: Scientists genetically modify bacteria to deliver drugs. Nat. Med. 23, 5–7 (2017).

Vandenbroucke, K. et al. Orally administered L. lactis secreting an anti-TNF Nanobody demonstrate efficacy in chronic colitis. Mucosal Immunol. 3, 49–56 (2010).

Limaye, S. A. et al. Phase 1b, multicenter, single blinded, placebo-controlled, sequential dose escalation study to assess the safety and tolerability of topically applied AG013 in subjects with locally advanced head and neck cancer receiving induction chemotherapy. Cancer 119, 4268–4276 (2013).

Lagenaur, L. A. et al. Prevention of vaginal SHIV transmission in macaques by a live recombinant Lactobacillus. Mucosal Immunol. 4, 648–657 (2011).

US National Library of Medicine. Clinicaltrials.gov https://clinicaltrials.gov/ct2/show/NCT03751007 (2021).

US National Library of Medicine. Clinicaltrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02766023 (2020).

Flores Bueso, Y., Lehouritis, P. & Tangney, M. In situ biomolecule production by bacteria; a synthetic biology approach to medicine. J. Control. Rel. 275, 217–228 (2018).

Krámli, A. & Horváth, J. Microbiological oxidation of sterols. Nature 162, 619 (1948).

Lintner, C. J. & Liebig, H. J. v. Über die Reduktion des Furfurols durch Hefe bei der alkoholischen Gärung. Hoppe Seylers Z. Physiol. Chem. 72, 449–454 (1911).

Burkovski, A. (ed.) Corynebacterium Glutamicum: From Systems Biology to Biotechnological Applications (Caister Academic Press, 2015)

Lee, B. H. Fundamentals of Food Biotechnology (Wiley, 1996).

Young, A. L. The World Congress on Industrial Biotechnology and Bioprocessing. Environ. Sci. Pollut. Res. 11, 202 (2004).

Bučko, M. et al. Continuous testing system for Baeyer-Villiger biooxidation using recombinant Escherichia coli expressing cyclohexanone monooxygenase encapsulated in polyelectrolyte complex capsules. Enzym. Microb. Technol. 49, 284–288 (2011).

Edel, M., Horn, H. & Gescher, J. Biofilm systems as tools in biotechnological production. Appl. Microbiol. Biotechnol. 103, 5095–5103 (2019).

Cheng, K.-C., Demirci, A. & Catchmark, J. M. Advances in biofilm reactors for production of value-added products. Appl. Microbiol. Biotechnol. 87, 445–456 (2010).

Rudroff, F. Whole-cell based synthetic enzyme cascades — light and shadow of a promising technology. Curr. Opin. Chem. Biol. 49, 84–90 (2019).

Han, L., Zhao, Y., Cui, S. & Liang, B. Redesigning of microbial cell surface and its application to whole-cell biocatalysis and biosensors. Appl. Biochem. Biotechnol. 185, 396–418 (2018).

Rosano, G. L. & Ceccarelli, E. A. Recombinant protein expression in Escherichia coli: advances and challenges. Front. Microbiol. 5, 172 (2014).

Park, M., Tsai, S.-L. & Chen, W. Microbial biosensors: engineered microorganisms as the sensing machinery. Sensors 13, 5777–5795 (2013).

Metkar, S. K. & Girigoswami, K. Diagnostic biosensors in medicine – A review. Biocatal. Agric. Biotechnol. 17, 271–283 (2019).

Gui, Q., Lawson, T., Shan, S., Yan, L. & Liu, Y. The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics. Sensors 17, 1623 (2017).

Liu, X. et al. Stretchable living materials and devices with hydrogel–elastomer hybrids hosting programmed cells. Proc. Natl Acad. Sci. USA 114, 2200–2205 (2017).

Mimee, M. et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 360, 915–918 (2018).

Mora, C. A., Herzog, A. F., Raso, R. A. & Stark, W. J. Programmable living material containing reporter micro-organisms permits quantitative detection of oligosaccharides. Biomaterials 61, 1–9 (2015).

Schulz-Schönhagen, K., Lobsiger, N. & Stark, W. J. Continuous production of a shelf-stable living material as a biosensor platform. Adv. Mater. Technol. 4, 1900266 (2019).

Gilbert, C. et al. Living materials with programmable functionalities grown from engineered microbial co-cultures. Nat. Mater. 20, 691–700 (2021). Bacteria and yeast used for the production of bacterial cellulose-based engineered living materials with potential applications in biosensing and biocatalysis.

Lim, J. W., Ha, D., Lee, J., Lee, S. K. & Kim, T. Review of micro/nanotechnologies for microbial biosensors. Front. Bioeng. Biotechnol. 3, 61 (2015).

Hicks, M., Bachmann, T. T. & Wang, B. Synthetic biology enables programmable cell-based biosensors. ChemPhysChem 21, 132–144 (2020).

Saltepe, B., Kehribar, E. Ş., Su Yirmibeşogˇlu, S. S. & Şafak Şeker, U. Ö. Cellular biosensors with engineered genetic circuits. ACS Sens. 3, 13–26 (2018).

Prescott, S. L. et al. The skin microbiome: impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organ. J. 10, 29 (2017).

Vargason, A. M. & Anselmo, A. C. Clinical translation of microbe-based therapies: Current clinical landscape and preclinical outlook. Bioeng. Transl. Med. 3, 124–137 (2018).

Glinel, K., Behrens, A., Langer, R. S., Jaklenec, A. & Jonas, A. M. Nanofibrillar patches of commensal skin bacteria. Biomacromolecules 20, 102–108 (2019).

Nussbaumer, M. G. et al. Bootstrapped biocatalysis: biofilm-derived materials as reversibly functionalizable multienzyme surfaces. ChemCatChem 9, 4328–4333 (2017).

Tay, P. K. R., Nguyen, P. Q. & Joshi, N. S. A synthetic circuit for mercury bioremediation using self-assembling functional amyloids. ACS Synth. Biol. 6, 1841–1850 (2017).

Zhong, C. et al. Strong underwater adhesives made by self-assembling multi-protein nanofibres. Nat. Nanotechnol. 9, 858–866 (2014).

Wang, Y. et al. Living materials fabricated via gradient mineralization of light-inducible biofilms. Nat. Chem. Biol. 17, 351–359 (2021).

Barnhart, M. M. & Chapman, M. R. Curli biogenesis and function. Annu. Rev. Microbiol. 60, 131–147 (2006).

Pu, J. et al. Virus disinfection from environmental water sources using living engineered biofilm materials. Adv. Sci. 7, 1903558 (2020).

Huang, J. et al. Programmable and printable Bacillus subtilis biofilms as engineered living materials. Nat. Chem. Biol. 15, 34–41 (2019).

Lu, P., Takai, K., Weaver, V. M. & Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 3, a005058 (2011).

Oxford, J. T., Reeck, J. C. & Hardy, M. J. Extracellular matrix in development and disease. Int. J. Mol. Sci. 20, 205 (2019).

Zhang, J., Jensen, M. K. & Keasling, J. D. Development of biosensors and their application in metabolic engineering. Curr. Opin. Chem. Biol. 28, 1–8 (2015).

Saadeddin, A. et al. Functional living biointerphases. Adv. Healthc. Mater. 2, 1213–1218 (2013).

Hay, J. J. et al. Living biointerfaces based on non-pathogenic bacteria support stem cell differentiation. Sci. Rep. 6, 21809 (2016).

Rodrigo-Navarro, A., Rico, P., Saadeddin, A., Garcia, A. J. & Salmeron-Sanchez, M. Living biointerfaces based on non-pathogenic bacteria to direct cell differentiation. Sci. Rep. 4, 5849 (2014).

Mierau, I. & Kleerebezem, M. 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl. Microbiol. Biotechnol. 68, 705–717 (2005).

Zollinger, A. J. & Smith, M. L. Fibronectin, the extracellular glue. Matrix Biol. 60–61, 27–37 (2017).

Sankaran, S., Zhao, S., Muth, C., Paez, J. & Del Campo, A. Toward light-regulated living biomaterials. Adv. Sci. 5, 1800383 (2018). Light-responsive living biointerfaces capable of adhesively interacting with mammalian cells and delivering proteins within their cytosol.

Bernhagen, D., De Laporte, L. & Timmerman, P. High-affinity RGD-knottin peptide as a new tool for rapid evaluation of the binding strength of unlabeled RGD-peptides to αvβ3, αvβ5, and α5β1 integrin receptors. Anal. Chem. 89, 5991–5997 (2017).

Kesik-Brodacka, M. Progress in biopharmaceutical development. Biotechnol. Appl. Biochem. 65, 306–322 (2018).

Cordaillat-Simmons, M., Rouanet, A. & Pot, B. Live biotherapeutic products: the importance of a defined regulatory framework. Exp. Mol. Med. 52, 1397–1406 (2020).

Al-Mujaini, A., Al-Kharusi, N., Thakral, A. & Wali, U. K. Bacterial keratitis: perspective on epidemiology, clinico-pathogenesis, diagnosis and treatment. Sultan Qaboos Univ. Med. J. 9, 184–195 (2009).

Cole, P. The damaging role of bacteria in chronic lung infection. J. Antimicrob. Chemother. 40, 5–10 (1997).

Ferreiro, A., Dantas, G. & Ciorba, M. A. Insights into how probiotics colonize the healthy human gut. Gastroenterology 156, 820–822 (2019).

Guo, S. et al. Engineered living materials based on adhesin-mediated trapping of programmable cells. ACS Synth. Biol. 9, 475–485 (2020). Interesting approach to harness the ability of bacterial adhesins to immobilize cells in synthetic matrices.

Park, J. K. & Chang, H. N. Microencapsulation of microbial cells. Biotechnol. Adv. 18, 303–319 (2000).

de Vos, P. et al. Multiscale requirements for bioencapsulation in medicine and biotechnology. Biomaterials 30, 2559–2570 (2009).

Ramakrishna, S. V. & Prakasham, R. S. Microbial fermentations with immobilized cells. Curr. Sci. 77, 87–100 (1999).

Jung, I. et al. A dip-stick type biosensor using bioluminescent bacteria encapsulated in color-coded alginate microbeads for detection of water toxicity. Analyst 139, 4696–4701 (2014).

Avnir, D., Coradin, T., Lev, O. & Livage, J. Recent bio-applications of sol–gel materials. J. Mater. Chem. 16, 1013–1030 (2006).

Xu, L. et al. Encapsulation of Pannonibacter phragmitetus LSSE-09 in alginate–carboxymethyl cellulose capsules for reduction of hexavalent chromium under alkaline conditions. J. Ind. Microbiol. Biotechnol. 38, 1709–1718 (2011).

Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: A common cause of persistent infections. Science 284, 1318–1322 (1999).

Xu, H. et al. Characterizing pilus-mediated adhesion of biofilm-forming E. coli to chemically diverse surfaces using atomic force microscopy. Langmuir 29, 3000–3011 (2013).

Wong, J. X., Gonzalez-Miro, M., Sutherland-Smith, A. J. & Rehm, B. H. A. Covalent functionalization of bioengineered polyhydroxyalkanoate spheres directed by specific protein-protein interactions. Front. Bioeng. Biotechnol. 8, 44 (2020).

Asenjo, J. A. Bioreactor System Design (CRC Press, 1994).

Simões, M., Simões, L. C. & Vieira, M. J. A review of current and emergent biofilm control strategies. LWT Food Sci. Technol. 43, 573–583 (2010).

Teughels, W., Van Assche, N., Sliepen, I. & Quirynen, M. Effect of material characteristics and/or surface topography on biofilm development. Clin. Oral. Implant. Res. 17, 68–81 (2006).

Scheuerman, T. R., Camper, A. K. & Hamilton, M. A. Effects of substratum topography on bacterial adhesion. J. Colloid Interface Sci. 208, 23–33 (1998).

Garrett, T. R., Bhakoo, M. & Zhang, Z. Bacterial adhesion and biofilms on surfaces. Prog. Nat. Sci. 18, 1049–1056 (2008).

Hori, K. & Matsumoto, S. Bacterial adhesion: From mechanism to control. Biochem. Eng. J. 48, 424–434 (2010).

Rashid, H. The effect of surface roughness on ceramics used in dentistry: A review of literature. Eur. J. Dent. 08, 571–579 (2014).

Fernandez-Moure, J. S., Mydlowska, A., Shin, C., Vella, M. & Kaplan, L. J. Nanometric considerations in biofilm formation. Surg. Infect. 20, 167–173 (2019).

Sarao, L. K. & Arora, M. Probiotics, prebiotics, and microencapsulation: a review. Crit. Rev. Food Sci. Nutr. 57, 344–371 (2017).

Martín, M. J., Lara-Villoslada, F., Ruiz, M. A. & Morales, M. E. Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innov. Food Sci. Emerg. Technol. 27, 15–25 (2015).

Mohamed, M. G. A. et al. Microfluidics-based fabrication of cell-laden microgels. Biomicrofluidics 14, 021501 (2020).

Kupikowska-Stobba, B. & Lewińska, D. Polymer microcapsules and microbeads as cell carriers for in vivo biomedical applications. Biomater. Sci. 8, 1536–1574 (2020).

Li, P., Müller, M., Chang, M. W., Frettlöh, M. & Schönherr, H. Encapsulation of autoinducer sensing reporter bacteria in reinforced alginate-based microbeads. ACS Appl. Mater. Interfaces 9, 22321–22331 (2017).

Witte, K., Rodrigo-Navarro, A. & Salmeron-Sanchez, M. Bacteria-laden microgels as autonomous three-dimensional environments for stem cell engineering. Mater. Today Bio. 2, 100011 (2019).

Balusamy, B., Sarioglu, O. F., Senthamizhan, A. & Uyar, T. Rational design and development of electrospun nanofibrous biohybrid composites. ACS Appl. Bio Mater. 2, 3128–3143 (2019).

Christian, K. et al. Living composites of bacteria and polymers as biomimetic films for metal sequestration and bioremediation. Macromol. Biosci. 15, 1052–1059 (2015).

Abdali, Z., Logsetty, S. & Liu, S. Bacteria-responsive single and core–shell nanofibrous membranes based on polycaprolactone/poly(ethylene succinate) for on-demand release of biocides. ACS Omega 4, 4063–4070 (2019).

Kaiser, P. et al. Electrogenic single-species biocomposites as anodes for microbial fuel cells. Macromol. Biosci. 17, 1600442 (2017).

Kaiser, P., Reich, S., Greiner, A. & Freitag, R. Preparation of biocomposite microfibers ready for processing into biologically active textile fabrics for bioremediation. Macromol. Biosci. 18, 1800046 (2018).

Liu, Y., Rafailovich, M. H., Malal, R., Cohn, D. & Chidambaram, D. Engineering of bio-hybrid materials by electrospinning polymer-microbe fibers. Proc. Natl Acad. Sci. USA 106, 14201–14206 (2009).

Letnik, I. et al. Living composites of electrospun yeast cells for bioremediation and ethanol production. Biomacromolecules 16, 3322–3328 (2015).

Reich, S. et al. High-temperature spray-dried polymer/bacteria microparticles for electrospinning of composite nonwovens. Macromol. Biosci. 19, 1800356 (2019).

Xie, S. et al. Genetically engineering of Escherichia coli and immobilization on electrospun fibers for drug delivery purposes. J. Mater. Chem. B 4, 6820–6829 (2016).

de Morais, M. G. et al. Preparation of nanofibers containing the microalga Spirulina (Arthrospira). Bioresour. Technol. 101, 2872–2876 (2010).

Kim, S. H., Shin, C., Min, S. K., Jung, S.-M. & Shin, H. S. In vitro evaluation of the effects of electrospun PCL nanofiber mats containing the microalgae Spirulina (Arthrospira) extract on primary astrocytes. Colloids Surf. B Biointerfaces 90, 113–118 (2012).

Cha, B. G. et al. Structural characteristics and biological performance of silk fibroin nanofiber containing microalgae spirulina extract. Biopolymers 101, 307–318 (2014).

Schaffner, M., Rühs, P. A., Coulter, F., Kilcher, S. & Studart, A. R. 3D printing of bacteria into functional complex materials. Sci. Adv. 3, eaao6804 (2017). 3D bacteria-printing platform for the creation of functional materials by embedding bacteria into a functionalized bioink.

Schmieden, D. T. et al. Printing of patterned, engineered E. coli biofilms with a low-cost 3D printer. ACS Synth. Biol. 7, 1328–1337 (2018).

Qian, F. et al. Direct writing of tunable living inks for bioprocess intensification. Nano Lett. 19, 5829–5835 (2019).

Joshi, S., Cook, E. & Mannoor, M. S. Bacterial nanobionics via 3D printing. Nano Lett. 18, 7448–7456 (2018).

Lehner, B. A. E., Schmieden, D. T. & Meyer, A. S. A straightforward approach for 3D bacterial printing. ACS Synth. Biol. 6, 1124–1130 (2017).

Spiesz, E. M. et al. Three-dimensional patterning of engineered biofilms with a do-it-yourself bioprinter. J. Vis. Exp. https://doi.org/10.3791/59477 (2019).

Connell, J. L., Ritschdorff, E. T., Whiteley, M. & Shear, J. B. 3D printing of microscopic bacterial communities. Proc. Natl Acad. Sci. USA 110, 18380–18385 (2013).

Kandemir, N., Vollmer, W., Jakubovics, N. S. & Chen, J. Mechanical interactions between bacteria and hydrogels. Sci. Rep. 8, 10893 (2018).

Stewart, E. J., Ganesan, M., Younger, J. G. & Solomon, M. J. Artificial biofilms establish the role of matrix interactions in staphylococcal biofilm assembly and disassembly. Sci. Rep. 5, 13081 (2015).

Chen, X. & Stewart, P. S. Chlorine penetration into artificial biofilm is limited by a reaction–diffusion interaction. Environ. Sci. Technol. 30, 2078–2083 (1996).

Eun, Y.-J., Utada, A. S., Copeland, M. F., Takeuchi, S. & Weibel, D. B. Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation. ACS Chem. Biol. 6, 260–266 (2011).

Pabst, B., Pitts, B., Lauchnor, E. & Stewart, P. S. Gel-entrapped Staphylococcus aureus bacteria as models of biofilm infection exhibit growth in dense aggregates, oxygen limitation, antibiotic tolerance, and heterogeneous gene expression. Antimicrob. Agents Chemother. 60, 6294–6301 (2016).

Priks, H. et al. Physical confinement impacts cellular phenotypes within living materials. ACS Appl. Bio Mater. 3, 4273–4281 (2020).

Johnston, T. G. et al. Cell-laden hydrogels for multikingdom 3D printing. Macromol. Biosci. 20, 2000121 (2020).

Williams, D. F. On the mechanisms of biocompatibility. Biomaterials 29, 2941–2953 (2008).

Williams, D. in Bio-Implant Interface (eds Ellingsen, J. E. & Lyngstadaas, S. P.) (CRC Press, 2003)

U.S. Food and Drug Administration. Use of International Standard ISO-10993, ‘Biological Evaluation of Medical Devices Part 1: Evaluation and Testing’ (blue book memo) (International Standards Organization, 2018).

Anderson, J. M., Rodriguez, A. & Chang, D. T. Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008).

Levine, M. M., Barry, E. M. & Chen, W. H. A roadmap for enterotoxigenic Escherichia coli vaccine development based on volunteer challenge studies. Hum. Vaccin. Immunother. 15, 1357–1378 (2019).

Wang, J. et al. Intranasal administration with recombinant Bacillus subtilis induces strong mucosal immune responses against pseudorabies. Microb. Cell Fact. 18, 103 (2019).

Guo, M. et al. Construction of a recombinant Lactococcus lactis strain expressing a variant porcine epidemic diarrhea virus S1 gene and its immunogenicity analysis in mice. Viral Immunol. 32, 144–150 (2019).

Narvhus, J. A. & Axelsson, L. in Encyclopedia of Food Sciences and Nutrition 3465–3472 (Elsevier, 2003).

Wyszyńska, A., Kobierecka, P., Bardowski, J. & Jagusztyn-Krynicka, E. K. Lactic acid bacteria — 20 years exploring their potential as live vectors for mucosal vaccination. Appl. Microbiol. Biotechnol. 99, 2967–2977 (2015).

Cook, D. P., Gysemans, C. & Mathieu, C. Lactococcus lactis as a versatile vehicle for tolerogenic immunotherapy. Front. Immunol. 8, 1961 (2018).

Bermúdez-Humarán, L. G., Kharrat, P., Chatel, J.-M. M. & Langella, P. Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Microb. Cell Fact. 10, S4 (2011).

Kaper, J. B., Nataro, J. P. & Mobley, H. L. T. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2, 123–140 (2004).

Daegelen, P., Studier, F. W., Lenski, R. E., Cure, S. & Kim, J. F. Tracing ancestors and relatives of Escherichia coli B, and the derivation of B Strains REL606 and BL21(DE3). J. Mol. Biol. 394, 634–643 (2009).

Archer, C. T. et al. The genome sequence of E. coli W (ATCC 9637): comparative genome analysis and an improved genome-scale reconstruction of E. coli. BMC Genomics 12, 9 (2011).

Brzuszkiewicz, E. et al. Genome sequence analyses of two isolates from the recent Escherichia coli outbreak in Germany reveal the emergence of a new pathotype: Entero-Aggregative-Haemorrhagic Escherichia coli (EAHEC). Arch. Microbiol. 193, 883–891 (2011).

Morschhäuser, J. et al. Evolution of microbial pathogens. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 355, 695–704 (2000).

Liao, M. J., Din, M. O., Tsimring, L. & Hasty, J. Rock-paper-scissors: Engineered population dynamics increase genetic stability. Science 365, 1045–1049 (2019).

Bull, J. J. & Barrick, J. E. Arresting evolution. Trends Genet. 33, 910–920 (2017).

Geng, P., Leonard, S. P., Mishler, D. M. & Barrick, J. E. Synthetic genome defenses against selfish DNA elements stabilize engineered bacteria against evolutionary failure. ACS Synth. Biol. 8, 521–531 (2019).

Plavec, T. V. & Berlec, A. Safety aspects of genetically modified lactic acid bacteria. Microorganisms 8, 297 (2020).

Steidler, L. et al. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat. Biotechnol. 21, 785–789 (2003).

Rovner, A. J. et al. Recoded organisms engineered to depend on synthetic amino acids. Nature 518, 89–93 (2015).

Molina, L., Ramos, C., Ronchel, M.-C., Molin, S. & Ramos, J. L. Construction of an efficient biologically contained Pseudomonas putida strain and its survival in outdoor assays. Appl. Environ. Microbiol. 64, 2072–2078 (1998).

Li, Q. & Wu, Y.-J. A fluorescent, genetically engineered microorganism that degrades organophosphates and commits suicide when required. Appl. Microbiol. Biotechnol. 82, 749–756 (2009).

García, J. L. & Díaz, E. Plasmids as tools for containment. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.PLAS-0011-2013 (2014).

Piñero-Lambea, C., Ruano-Gallego, D. & Fernández, L. Á. Engineered bacteria as therapeutic agents. Curr. Opin. Biotechnol. 35, 94–102 (2015).

Marteau, P. R. Probiotics in clinical conditions. Clin. Rev. Allergy Immunol. 22, 255–273 (2002).

D’Souza, A. L., Rajkumar, C., Cooke, J. & Bulpitt, C. J. Probiotics in prevention of antibiotic associated diarrhoea: meta-analysis. BMJ 324, 1361 (2002).

Allen, S. J., Martinez, E. G., Gregorio, G. V. & Dans, L. F. Probiotics for treating acute infectious diarrhoea. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD003048.pub3 (2010).

Gionchetti, P. et al. Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: A double-blind, placebo-controlled trial. Gastroenterology 119, 305–309 (2000).

Weizman, Z., Asli, G. & Alsheikh, A. Effect of a probiotic infant formula on infections in child care centers: comparison of two probiotic agents. Pediatrics 115, 5–9 (2005).

Kalliomäki, M. et al. Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet 357, 1076–1079 (2001).

Rosenfeldt, V. et al. Effect of probiotic Lactobacillus strains in children with atopic dermatitis. J. Allergy Clin. Immunol. 111, 389–395 (2003).

Chahwan, B. et al. Gut feelings: A randomised, triple-blind, placebo-controlled trial of probiotics for depressive symptoms. J. Affect. Disord. 253, 317–326 (2019).

Samonin, V. V. & Elikova, E. E. A study of the adsorption of bacterial cells on porous materials. Microbiology 73, 696–701 (2004).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem