- -

Automated location of steel truss bridge damage using machine learning and raw strain sensor data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automated location of steel truss bridge damage using machine learning and raw strain sensor data

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Parisi, F. es_ES
dc.contributor.author Mangini, A. M. es_ES
dc.contributor.author Fanti, M. P. es_ES
dc.contributor.author Adam, Jose M es_ES
dc.date.accessioned 2022-12-21T19:00:44Z
dc.date.available 2022-12-21T19:00:44Z
dc.date.issued 2022-06 es_ES
dc.identifier.issn 0926-5805 es_ES
dc.identifier.uri http://hdl.handle.net/10251/190868
dc.description.abstract [EN] Strategic major infrastructure ageing requires structural health monitoring usage to avoid critical safety issues and disasters. Machine Learning can be a valuable tool to automate the process of analysing raw monitoring data. Usually, frequency domain damage-sensitive features are extracted with data pre-processing procedures; thus these features are used as input for classification or regression problems. This paper describes a method of locating damage in steel truss railway bridges through machine learning classification tools, enabling automatic analysis of raw strain sensors signals without any pre-processing or preliminary feature extraction. Data were generated by simulating different damage scenarios with a finite element software, and then were processed by two machine learning classification tools: (a) the K-nearest Neighbours was adopted with the Dynamic Time Warping algorithm metric to select the most informative features; (b) a model suitable for high-dimensional data analysis, known as the Convolutional Neural Network, was then trained to classify strain sensors time series. The results indicate that the method applied can detect damages with an accuracy of 93% and is suitable for structural health monitoring. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Automation in Construction es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Structural health monitoring es_ES
dc.subject Damage location es_ES
dc.subject Railway steel bridge es_ES
dc.subject Machine learning es_ES
dc.subject Neural network es_ES
dc.subject Feature selection es_ES
dc.subject Timeserie es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Automated location of steel truss bridge damage using machine learning and raw strain sensor data es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.autcon.2022.104249 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.description.bibliographicCitation Parisi, F.; Mangini, AM.; Fanti, MP.; Adam, JM. (2022). Automated location of steel truss bridge damage using machine learning and raw strain sensor data. Automation in Construction. 138:1-13. https://doi.org/10.1016/j.autcon.2022.104249 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.autcon.2022.104249 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 138 es_ES
dc.relation.pasarela S\462948 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem