- -

Undisclosed, unmet and neglected challenges in multi-omics studies

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Undisclosed, unmet and neglected challenges in multi-omics studies

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Tarazona, Sonia es_ES
dc.contributor.author Arzalluz-Luque, Ángeles es_ES
dc.contributor.author Conesa, Ana es_ES
dc.date.accessioned 2022-12-21T19:00:48Z
dc.date.available 2022-12-21T19:00:48Z
dc.date.issued 2021-06-21 es_ES
dc.identifier.issn 2662-8457 es_ES
dc.identifier.uri http://hdl.handle.net/10251/190870
dc.description.abstract [EN] Multi-omics approaches have become a reality in both large genomics projects and small laboratories. However, the multi-omics research community still faces a number of issues that have either not been sufficiently discussed or for which current solutions are still limited. In this Perspective, we elaborate on these limitations and suggest points of attention for future research. We finally discuss new opportunities and challenges brought to the field by the rapid development of single-cell high-throughput molecular technologies. es_ES
dc.description.sponsorship This work has been funded by the Spanish Ministry of Science and Innovation with grant number BES-2016-076994 to A.A.-L. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Computational Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Undisclosed, unmet and neglected challenges in multi-omics studies es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s43588-021-00086-z es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BES-2016-076994/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Tarazona, S.; Arzalluz-Luque, Á.; Conesa, A. (2021). Undisclosed, unmet and neglected challenges in multi-omics studies. Nature Computational Science. 1(6):395-402. https://doi.org/10.1038/s43588-021-00086-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s43588-021-00086-z es_ES
dc.description.upvformatpinicio 395 es_ES
dc.description.upvformatpfin 402 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 1 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\441967 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Fan, T. W. M., Bandura, L. L., Higashi, R. M. & Lane, A. N. Metabolomics-edited transcriptomics analysis of Se anticancer action in human lung cancer cells. Metabolomics 1, 325–339 (2005). es_ES
dc.description.references Panguluri, S. K. et al. Genomic profiling of messenger RNAs and microRNAs reveals potential mechanisms of TWEAK-induced skeletal muscle wasting in mice. PLoS ONE 5, e8760 (2010). es_ES
dc.description.references Song, L. et al. Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res. 21, 1757–1767 (2011). es_ES
dc.description.references Kim, S., Jhong, J.-H., Lee, J. & Koo, J.-Y. Meta-analytic support vector machine for integrating multiple omics data. BioData Min. 10, 2 (2017). es_ES
dc.description.references Vaske, C. J. et al. Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics 26, i237–i245 (2010). es_ES
dc.description.references Mo, Q. et al. A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data. Biostatistics 19, 71–86 (2017). es_ES
dc.description.references Argelaguet, R. et al. Multi-omics factor analysis—a framework for unsupervised integration of multi-omics data sets. Mol. Syst. Biol. 14, e8124 (2018). es_ES
dc.description.references Rohart, F., Gautier, B., Singh, A. & Lê Cao, K.-A. mixOmics: an R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 13, e1005752 (2017). es_ES
dc.description.references Zhang, L. et al. Deep learning-based multi-omics data integration reveals two prognostic subtypes in high-risk neuroblastoma. Front. Genet. 9, 477 (2018). es_ES
dc.description.references Ma, T. & Zhang, A. Integrate multi-omics data with biological interaction networks using multi-view factorization autoencoder (MAE). BMC Genomics 20, 944 (2019). es_ES
dc.description.references Huang, Z. et al. SALMON: survival analysis learning with multi-omics neural networks on breast cancer. Front. Genet. 10, 166 (2019). es_ES
dc.description.references Bersanelli, M. et al. Methods for the integration of multi-omics data: mathematical aspects. BMC Bioinformatics 17, 15 (2016). es_ES
dc.description.references De Bin, R., Boulesteix, A.-L., Benner, A., Becker, N. & Sauerbrei, W. Combining clinical and molecular data in regression prediction models: insights from a simulation study. Brief. Bioinform. 21, 1904–1919 (2020). es_ES
dc.description.references Pierre-Jean, M., Deleuze, J.-F., Le Floch, E. & Mauger, F. Clustering and variable selection evaluation of 13 unsupervised methods for multi-omics data integration. Brief. Bioinform. 21, 2011–2030 (2020). es_ES
dc.description.references Meng, C. et al. Dimension reduction techniques for the integrative analysis of multi-omics data. Brief. Bioinform. 17, 628–641 (2016). es_ES
dc.description.references Buescher, J. M. & Driggers, E. M. Integration of omics: more than the sum of its parts. Cancer Metab. 4, 4 (2016). es_ES
dc.description.references Hasin, Y., Seldin, M. & Lusis, A. Multi-omics approaches to disease. Genome Biol. 18, 83 (2017). es_ES
dc.description.references Kristensen, V. N. et al. Principles and methods of integrative genomic analyses in cancer. Nat. Rev. Cancer 14, 299–313 (2014). es_ES
dc.description.references Sathyanarayanan, A. et al. A comparative study of multi-omics integration tools for cancer driver gene identification and tumour subtyping. Brief. Bioinform. 21, 1920–1936 (2020). es_ES
dc.description.references Zeng, H. et al. Integrative radiogenomics analysis for predicting molecular features and survival in clear cell renal cell carcinoma. Aging 13, 9960–9975 (2021). es_ES
dc.description.references Kirienko, M. et al. Radiomics and gene expression profile to characterise the disease and predict outcome in patients with lung cancer. Eur. J. Nucl. Med. Mol. Imaging https://doi.org/10.1007/s00259-021-05371-7 (2021). es_ES
dc.description.references Zielinski, J. M., Luke, J. J., Guglietta, S. & Krieg, C. High throughput multi-omics approaches for clinical trial evaluation and drug discovery. Front. Immunol. 12, 590742 (2021). es_ES
dc.description.references Houle, D., Govindaraju, D. R. & Omholt, S. Phenomics: the next challenge. Nat. Rev. Genet. 11, 855–866 (2010). es_ES
dc.description.references van Bezouw, R. F. H. M., Keurentjes, J. J. B., Harbinson, J. & Aarts, M. G. M. Converging phenomics and genomics to study natural variation in plant photosynthetic efficiency. Plant J. Cell Mol. Biol. 97, 112–133 (2019). es_ES
dc.description.references Zhu, R., Zhao, Q., Zhao, H. & Ma, S. Integrating multidimensional omics data for cancer outcome. Biostatistics 17, 605–618 (2016). es_ES
dc.description.references Balzano-Nogueira, L. et al. Integrative analyses of TEDDY omics data reveal lipid metabolism abnormalities, increased intracellular ROS and heightened inflammation prior to autoimmunity for type 1 diabetes. Genome Biol. 22, 39 (2021). es_ES
dc.description.references Shen, R., Olshen, A. B. & Ladanyi, M. Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 25, 2906–2912 (2009). es_ES
dc.description.references Yener, B. et al. Multiway modeling and analysis in stem cell systems biology. BMC Syst. Biol. 2, 63 (2008). es_ES
dc.description.references Conesa, A., Prats-Montalbán, J. M., Tarazona, S., Nueda, M. J. & Ferrer, A. A multiway approach to data integration in systems biology based on Tucker3 and N-PLS. Chemom. Intell. Lab. Syst. 104, 101–111 (2010). es_ES
dc.description.references Meng, C., Kuster, B., Culhane, A. C. & Gholami, A. M. A multivariate approach to the integration of multi-omics datasets. BMC Bioinformatics 15, 162 (2014). es_ES
dc.description.references van der Kloet, F. M., Sebastián-León, P., Conesa, A., Smilde, A. K. & Westerhuis, J. A. Separating common from distinctive variation. BMC Bioinformatics 17, 195 (2016). es_ES
dc.description.references O’Connell, M. J. & Lock, E. F. R.JIVE for exploration of multi-source molecular data. Bioinformatics 32, 2877–2879 (2016). es_ES
dc.description.references Bouhaddani, S. E. et al. Integrating omics datasets with the OmicsPLS package. BMC Bioinformatics 19, 371 (2018). es_ES
dc.description.references Planell, N. et al. STATegra: multi-omics data integration—a conceptual scheme with a bioinformatics pipeline. Front. Genet. 12, 143 (2021). es_ES
dc.description.references Boulesteix, A.-L., De Bin, R., Jiang, X. & Fuchs, M. IPF-LASSO: integrative L(1)-penalized regression with penalty factors for prediction based on multi-omics data. Comput. Math. Methods Med. 2017, 7691937 (2017). es_ES
dc.description.references Kennedy, E. M. et al. An integrated -omics analysis of the epigenetic landscape of gene expression in human blood cells. BMC Genomics 19, 476 (2018). es_ES
dc.description.references Wu, M.-Y. et al. Regularized logistic regression with network-based pairwise interaction for biomarker identification in breast cancer. BMC Bioinformatics 17, 108 (2016). es_ES
dc.description.references Wu, C. et al. A selective review of multi-level omics data integration using variable selection. High Throughput 8, 4 (2019). es_ES
dc.description.references Lagani, V., Kortas, G. & Tsamardinos, I. Biomarker signature identification in ‘omics’ data with multi-class outcome. Comput. Struct. Biotechnol. J. 6, e201303004 (2013). es_ES
dc.description.references Le, D.-H. Machine learning-based approaches for disease gene prediction. Brief. Funct. Genomics 19, 350–363 (2020). es_ES
dc.description.references Fang, H., Huang, C., Zhao, H. & Deng, M. CCLasso: correlation inference for compositional data through Lasso. Bioinformatics 31, 3172–3180 (2015). es_ES
dc.description.references Klau, S., Jurinovic, V., Hornung, R., Herold, T. & Boulesteix, A.-L. Priority-Lasso: a simple hierarchical approach to the prediction of clinical outcome using multi-omics data. BMC Bioinformatics 19, 322 (2018). es_ES
dc.description.references Li, J., Lu, Q. & Wen, Y. Multi-kernel linear mixed model with adaptive lasso for prediction analysis on high-dimensional multi-omics data. Bioinformatics 36, 1785–1794 (2020). es_ES
dc.description.references Park, H., Niida, A., Miyano, S. & Imoto, S. Sparse overlapping group lasso for integrative multi-omics analysis. J. Comput. Biol. 22, 73–84 (2015). es_ES
dc.description.references Singh, A. et al. DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays. Bioinformatics 35, 3055–3062 (2019). es_ES
dc.description.references Patel-Murray, N. L. et al. A multi-omics interpretable machine learning model reveals modes of action of small molecules. Sci. Rep. 10, 954 (2020). es_ES
dc.description.references Gusev, A. et al. Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nat. Genet. 50, 538–548 (2018). es_ES
dc.description.references Rubio, T. et al. Multi-omic analysis unveils biological pathways in peripheral immune system associated to minimal hepatic encephalopathy appearance in cirrhotic patients. Sci. Rep. 11, 1907 (2021). es_ES
dc.description.references Cai, X., Bazerque, J. A. & Giannakis, G. B. Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations. PLoS Comput. Biol. 9, e1003068 (2013). es_ES
dc.description.references Oberhardt, M. A., Chavali, A. K. & Papin, J. A. Flux balance analysis: interrogating genome-scale metabolic networks. Methods Mol. Biol. 500, 61–80 (2009). es_ES
dc.description.references Orth, J. D., Thiele, I. & Palsson, B. Ø. What is flux balance analysis? Nat. Biotechnol. 28, 245–248 (2010). es_ES
dc.description.references Covert, M. W., Schilling, C. H. & Palsson, B. Regulation of gene expression in flux balance models of metabolism. J. Theor. Biol. 213, 73–88 (2001). es_ES
dc.description.references Tzika, E., Dreker, T. & Imhof, A. Epigenetics and metabolism in health and disease. Front. Genet. 9, 361 (2018). es_ES
dc.description.references Siebert, J. C. et al. CANTARE: finding and visualizing network-based multi-omic predictive models. BMC Bioinformatics 22, 80 (2021). es_ES
dc.description.references Tarazona, S. et al. Harmonization of quality metrics and power calculation in multi-omic studies. Nat. Commun. 11, 3092 (2020). es_ES
dc.description.references Soerensen, M. et al. A genome-wide integrative association study of DNA methylation and gene expression data and later life cognitive functioning in monozygotic twins. Front. Neurosci. 14, https://doi.org/10.3389/fnins.2020.00233 (2020). es_ES
dc.description.references Dai, Y., Pei, G., Zhao, Z. & Jia, P. A convergent study of genetic variants associated with Crohn’s disease: evidence from GWAS, gene expression, methylation, eQTL and TWAS. Front. Genet. 10, https://doi.org/10.3389/fgene.2019.00318 (2019). es_ES
dc.description.references Karathanasis, N., Tsamardinos, I. & Lagani, V. omicsNPC: applying the non-parametric combination methodology to the integrative analysis of heterogeneous omics data. PLoS ONE 11, e0165545 (2016). es_ES
dc.description.references Garcia-Alcalde, F., Garcia-Lopez, F., Dopazo, J. & Conesa, A. Paintomics: a web based tool for the joint visualization of transcriptomics and metabolomics data. Bioinformatics 27, 137–139 (2011). es_ES
dc.description.references Voillet, V., Besse, P., Liaubet, L., San Cristobal, M. & González, I. Handling missing rows in multi-omics data integration: multiple imputation in multiple factor analysis framework. BMC Bioinformatics 17, 402 (2016). es_ES
dc.description.references Kuo, R. I. et al. Normalized long read RNA sequencing in chicken reveals transcriptome complexity similar to human. BMC Genomics 18, 323 (2017). es_ES
dc.description.references Conesa, A. & Beck, S. Making multi-omics data accessible to researchers. Sci. Data 6, 251 (2019). es_ES
dc.description.references Dong, X. et al. TOBMI: trans-omics block missing data imputation using a k-nearest neighbor weighted approach. Bioinformatics 35, 1278–1283 (2019). es_ES
dc.description.references Zhou, X., Chai, H., Zhao, H., Luo, C.-H. & Yang, Y. Imputing missing RNA-sequencing data from DNA methylation by using a transfer learning–based neural network. GigaScience 9, https://doi.org/10.1093/gigascience/giaa076 (2020). es_ES
dc.description.references Ugidos, M., Tarazona, S., Prats-Montalbán, J. M., Ferrer, A. & Conesa, A. MultiBaC: a strategy to remove batch effects between different omic data types. Stat. Methods Med. Res. 29, 2851–2864 (2020). es_ES
dc.description.references Messer, K., Vaida, F. & Hogan, C. Robust analysis of biomarker data with informative missingness using a two-stage hypothesis test in an HIV treatment interruption trial: AIEDRP AIN503/ACTG A5217. Contemp. Clin. Trials 27, 506–517 (2006). es_ES
dc.description.references Hong, M.-G., Pawitan, Y., Magnusson, P. K. E. & Prince, J. A. Strategies and issues in the detection of pathway enrichment in genome-wide association studies. Hum. Genet. 126, 289–301 (2009). es_ES
dc.description.references Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005). es_ES
dc.description.references Arneson, D., Bhattacharya, A., Shu, L., Mäkinen, V.-P. & Yang, X. Mergeomics: a web server for identifying pathological pathways, networks, and key regulators via multidimensional data integration. BMC Genomics 17, 722 (2016). es_ES
dc.description.references Welch, R. P. et al. ChIP-enrich: gene set enrichment testing for ChIP-seq data. Nucleic Acids Res. 42, e105 (2014). es_ES
dc.description.references Canzler, S. & Hackermüller, J. multiGSEA: a GSEA-based pathway enrichment analysis for multi-omics data. BMC Bioinformatics 21, 561 (2020). es_ES
dc.description.references Long, Y., Lu, M., Cheng, T., Zhan, X. & Zhan, X. Multiomics-based signaling pathway network alterations in human non-functional pituitary adenomas. Front. Endocrinol. 10, https://doi.org/10.3389/fendo.2019.00835 (2019). es_ES
dc.description.references Hernández-de-Diego, R. et al. PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data. Nucleic Acids Res. 46, W503–W509 (2018). es_ES
dc.description.references Sakurai, N. et al. KaPPA-View4: a metabolic pathway database for representation and analysis of correlation networks of gene co-expression and metabolite co-accumulation and omics data. Nucleic Acids Res. 39, D677–D684 (2011). es_ES
dc.description.references Su, G., Morris, J. H., Demchak, B. & Bader, G. D. Biological network exploration with Cytoscape 3. Curr. Protoc. Bioinformatics 47, 8.13.11–18.13.24 (2014). es_ES
dc.description.references Kuo, T. C., Tian, T. F. & Tseng, Y. J. 3Omics: a web-based systems biology tool for analysis, integration and visualization of human transcriptomic, proteomic and metabolomic data. BMC Syst. Biol. 7, https://doi.org/10.1186/1752-0509-7-64 (2013). es_ES
dc.description.references Miller, J. J. Graph database applications and concepts with Neo4j. In Proc. Southern Association for Information Systems Conference (AIS, 2013). es_ES
dc.description.references Yoon, B.-H., Kim, S.-K. & Kim, S.-Y. Use of graph database for the integration of heterogeneous biological data. Genomics Inform. 15, 19–27 (2017). es_ES
dc.description.references Consortium, T. I. Hi. R. N. The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe 16, 276–289 (2014). es_ES
dc.description.references ICGC Data Portal (The International Cancer Genome Consortium, 2021); https://dcc.icgc.org/ es_ES
dc.description.references Human Microbiome Project Data Portal (Human Microbiome Project, 2021); https://portal.hmpdacc.org/ es_ES
dc.description.references Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016). es_ES
dc.description.references Kodama, Y., Shumway, M. & Leinonen, R. The Sequence Read Archive: explosive growth of sequencing data. Nucleic Acids Res. 40, D54–D56 (2012). es_ES
dc.description.references Tryka, K. A. et al. NCBI’s Database of Genotypes and Phenotypes: dbGaP. Nucleic Acids Res. 42, D975–D979 (2014). es_ES
dc.description.references Lappalainen, I. et al. The European Genome-phenome Archive of human data consented for biomedical research. Nat. Genet. 47, 692–695 (2015). es_ES
dc.description.references Haug, K. et al. MetaboLights: a resource evolving in response to the needs of its scientific community. Nucleic Acids Res. 48, D440–D444 (2020). es_ES
dc.description.references Deutsch, E. W. et al. The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition. Nucleic Acids Res. 45, D1100–D1106 (2017). es_ES
dc.description.references Byrd, J. B., Greene, A. C., Prasad, D. V., Jiang, X. & Greene, C. S. Responsible, practical genomic data sharing that accelerates research. Nat. Rev. Genet. 21, 615–629 (2020). es_ES
dc.description.references Hernandez-de-Diego, R. et al. STATegra EMS: an experiment management system for complex next-generation omics experiments. BMC Syst. Biol. 8, S9 (2014). es_ES
dc.description.references Lin, K. et al. MADMAX—management and analysis database for multiple ~omics experiments. J. Integr. Bioinform. 8, 59–74 (2011). es_ES
dc.description.references Venco, F., Vaskin, Y., Ceol, A. & Muller, H. SMITH: a LIMS for handling next-generation sequencing workflows. BMC Bioinformatics 15, S3 (2014). es_ES
dc.description.references Perez-Riverol, Y. et al. Discovering and linking public omics data sets using the Omics Discovery index. Nat. Biotechnol. 35, 406–409 (2017). es_ES
dc.description.references Chervitz, S. A. et al. in Bioinformatics for Omics Data: Methods and Protocols (ed. Mayer, B.) 31–69 (Humana Press, 2011). es_ES
dc.description.references Karczewski, K. J. & Snyder, M. P. Integrative omics for health and disease. Nat. Rev. Genet. 19, 299–310 (2018). es_ES
dc.description.references van Karnebeek, C. D. M. et al. The role of the clinician in the multi-omics era: are you ready? J. Inherit. Metab. Dis. 41, 571–582 (2018). es_ES
dc.description.references Angione, C. Human systems biology and metabolic modelling: a review—from disease metabolism to precision medicine. Biomed. Res. Int. 2019, 8304260 (2019). es_ES
dc.description.references Hériché, J.-K., Alexander, S. & Ellenberg, J. Integrating imaging and omics: computational methods and challenges. Annu. Rev. Biomed. Data Sci. 2, 175–197 (2019). es_ES
dc.description.references Lee, J., Hyeon, D. Y. & Hwang, D. Single-cell multiomics: technologies and data analysis methods. Exp. Mol. Med. 52, 1428–1442 (2020). es_ES
dc.description.references Stein, L. D. The case for cloud computing in genome informatics. Genome Biol. 11, 207 (2010). es_ES
dc.description.references Oh, M., Park, S., Kim, S. & Chae, H. Machine learning-based analysis of multi-omics data on the cloud for investigating gene regulations. Brief. Bioinform. 22, 66–76 (2020). es_ES
dc.description.references Solomonik, E., Carson, E., Knight, N. & Demmel, J. Trade-offs between synchronization, communication, and computation in parallel linear algebra computations. ACM Trans. Parallel Comput. 3, 1–47 (2016). es_ES
dc.description.references Berger, B., Peng, J. & Singh, M. Computational solutions for omics data. Nat. Rev. Genet. 14, 333–346 (2013). es_ES
dc.description.references Alyass, A., Turcotte, M. & Meyre, D. From big data analysis to personalized medicine for all: challenges and opportunities. BMC Med. Genet. 8, 33 (2015). es_ES
dc.description.references Chen, X.-W. & Lin, X. Big data deep learning: challenges and perspectives. IEEE Access 2, 514–525 (2014). es_ES
dc.description.references Fan, J., Slowikowski, K. & Zhang, F. Single-cell transcriptomics in cancer: computational challenges and opportunities. Exp. Mol. Med. 52, 1452–1465 (2020). es_ES
dc.description.references Armand, E. J., Li, J., Xie, F., Luo, C. & Mukamel, E. A. Single-cell sequencing of brain cell transcriptomes and epigenomes. Neuron 109, 11–26 (2021). es_ES
dc.description.references Zhu, C., Preissl, S. & Ren, B. Single-cell multimodal omics: the power of many. Nat. Methods 17, 11–14 (2020). es_ES
dc.description.references Forcato, M., Romano, O. & Bicciato, S. Computational methods for the integrative analysis of single-cell data. Brief. Bioinform. 22, 20–29 (2021). es_ES
dc.description.references Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882.e1821 (2016). es_ES
dc.description.references Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018). es_ES
dc.description.references Raj, B. et al. Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain. Nat. Biotechnol. 36, 442–450 (2018). es_ES
dc.description.references Trapnell, C. & Cacchiarelli, D. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014). es_ES
dc.description.references Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017). es_ES
dc.description.references Darmanis, S. et al. Simultaneous multiplexed measurement of RNA and proteins in single cells. Cell Rep. 14, 380–389 (2016). es_ES
dc.description.references Peterson, V. M. et al. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35, 936–939 (2017). es_ES
dc.description.references Chen, H. et al. Assessment of computational methods for the analysis of single-cell ATAC-seq data. Genome Biol. 20, 241 (2019). es_ES
dc.description.references Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019). es_ES
dc.description.references Welch, J. D., Hartemink, A. J. & Prins, J. F. MATCHER: manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamics. Genome Biol. 18, 138 (2017). es_ES
dc.description.references Campbell, K. R. et al. clonealign: statistical integration of independent single-cell RNA and DNA sequencing data from human cancers. Genome Biol. 20, 54 (2019). es_ES
dc.description.references Fan, J. et al. Linking transcriptional and genetic tumor heterogeneity through allele analysis of single-cell RNA-seq data. Genome Res. 28, 1217–1227 (2018). es_ES
dc.description.references Van Der Wijst, M. G. P. et al. Single-cell RNA sequencing identifies celltype-specific cis-eQTLs and co-expression QTLs. Nat. Genet. 50, 493–497 (2018). es_ES
dc.description.references La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018). es_ES
dc.description.references Bray, M.-A. et al. Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. Nat. Protoc. 11, 1757–1774 (2016). es_ES
dc.description.references Sedgewick, A. J., Benz, S. C., Rabizadeh, S., Soon-Shiong, P. & Vaske, C. J. Learning subgroup-specific regulatory interactions and regulator independence with PARADIGM. Bioinformatics 29, i62–i70 (2013). es_ES
dc.description.references Gomez-Cabrero, D. et al. STATegra, a comprehensive multi-omics dataset of B-cell differentiation in mouse. Sci. Data 6, 256 (2019). es_ES
dc.description.references Hutter, C. & Zenklusen, J. C. The Cancer Genome Atlas: creating lasting value beyond its data. Cell 173, 283–285 (2018). es_ES
dc.description.references Ghandi, M. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569, 503–508 (2019). es_ES
dc.description.references Lonsdale, J. et al. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013). es_ES
dc.description.references Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021). es_ES
dc.description.references Moore, J. E. et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020). es_ES
dc.description.references Almeida, A. et al. A new genomic blueprint of the human gut microbiota. Nature 568, 499–504 (2019). es_ES
dc.description.references Mergner, J. et al. Mass-spectrometry-based draft of the Arabidopsis proteome. Nature 579, 409–414 (2020). es_ES
dc.description.references O’Connor, T. R., Dyreson, C. & Wyrick, J. J. Athena: a resource for rapid visualization and systematic analysis of Arabidopsis promoter sequences. Bioinformatics 21, 4411–4413 (2005). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem