- -

Determining the neutrino mass ordering and oscillation parameters with KM3NeT/ORCA

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Determining the neutrino mass ordering and oscillation parameters with KM3NeT/ORCA

Mostrar el registro completo del ítem

Aiello, S.; Albert, A.; Alves Garre, S.; Aly, Z.; Ambrosone, A.; Ameli, F.; Andre, M.... (2022). Determining the neutrino mass ordering and oscillation parameters with KM3NeT/ORCA. The European Physical Journal C. 82(1):1-16. https://doi.org/10.1140/epjc/s10052-021-09893-0

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/190905

Ficheros en el ítem

Metadatos del ítem

Título: Determining the neutrino mass ordering and oscillation parameters with KM3NeT/ORCA
Autor: Aiello, S. Albert, A. Alves Garre, S. Aly, Z. Ambrosone, A. Ameli, F. Andre, M. Androulakis, G. Anghinolfi, M. Anguita, M. Anton, G. Ardid Ramírez, Miguel Ardid-Ramírez, Joan Salvador Aublin, J. Bagatelas, C. Bou Cabo, Manuel Diego-Tortosa, D. Espinosa Roselló, Víctor Martínez Mora, Juan Antonio Poirè, Chiara
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia
Fecha difusión:
Resumen:
[EN] The next generation of water Cherenkov neu-trino telescopes in the Mediterranean Sea are under con- struction offshore France (KM3NeT/ORCA) and Sicily (KM3NeT/ARCA). The KM3NeT/ORCA detector features an energy detection ...[+]
Palabras clave: Neutrino mass ordering , Oscillation parameters
Derechos de uso: Reconocimiento (by)
Fuente:
The European Physical Journal C. (issn: 1434-6044 )
DOI: 10.1140/epjc/s10052-021-09893-0
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1140/epjc/s10052-021-09893-0
Código del Proyecto:
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//GRISOLIAP%2F2018%2F119//AYUDA SANTIAGO GRISOLIA PROYECTO: ACUSTICA EN DETECTORES DE PARTICULAS/
...[+]
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//GRISOLIAP%2F2018%2F119//AYUDA SANTIAGO GRISOLIA PROYECTO: ACUSTICA EN DETECTORES DE PARTICULAS/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096663-A-C42/ES/CARACTERIZACION DEL FONDO ACUSTICO EN EL OBSERVATORIO SUBMARINO KM3NET/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//CIDEGENT%2F2019%2F043//AYUDA CONTRATACION CIDEGENT INVESTIGADORES DE EXCELENCIA-ARDID RAMIREZ, JOAN/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096663-B-C41/ES/FISICA FUNDAMENTAL Y ASTRONOMIA MULTIMENSAJERO CON TELESCOPIOS DE NEUTRINOS/
info:eu-repo/grantAgreement/Junta de Andalucía//SOMM17%2F6104%2FUGR /
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096663-B-C43/ES/FISICA FUNDAMENTAL, DETECCION ACUSTICA Y ASTRONOMIA MULTI-MENSAJERO CON TELESCOPIOS DE NEUTRINOS EN LA UPV/
info:eu-repo/grantAgreement/ANR//ANR-15-CE31-0020 /
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096663-B-C44/ES/FISICA FUNDAMENTAL Y ASTRONOMIA MULTI-MENSAJERO CON TELESCOPIOS DE NEUTRINOS EN LA UGR/
info:eu-repo/grantAgreement/EC/H2020/713673/EU
info:eu-repo/grantAgreement/ANR//ANR-18-IDEX-0001 /
info:eu-repo/grantAgreement/GVA//CIDEGENT%2F2018%2F034 /
info:eu-repo/grantAgreement/MIUR//NAT-NET 2017W4HA7S /
info:eu-repo/grantAgreement/NCN//2015%2F18%2FE%2FST2%2F00758 /
info:eu-repo/grantAgreement/Ministère de l'Education Nationale, de la Formation professionnelle, de l'Enseignement Supérieur et de la Recherche Scientifique, Marruecos//AF-13/
info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//LCF%2FBQ%2FIN17%2F11620019 /
info:eu-repo/grantAgreement/SRNSF//FR-18-1268 /
info:eu-repo/grantAgreement/LabEx UnivEarthS//ANR-10-LABX-0023 /
[-]
Agradecimientos:
The authors acknowledge the financial support of the funding agencies: Agence Nationale de la Recherche (contract ANR-15-CE31-0020), Centre National de la Recherche Scientifique (CNRS), Commission Europeenne (FEDER fund ...[+]
Tipo: Artículo

References

B. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28, 870 (1962). https://doi.org/10.1143/PTP.28.870

B. Pontecorvo, Sov. Phys. JETP 26, 984 (1968)

V. Gribov, B. Pontecorvo, Phys. Lett. B 28, 493 (1969). https://doi.org/10.1016/0370-2693(69)90525-5 [+]
B. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28, 870 (1962). https://doi.org/10.1143/PTP.28.870

B. Pontecorvo, Sov. Phys. JETP 26, 984 (1968)

V. Gribov, B. Pontecorvo, Phys. Lett. B 28, 493 (1969). https://doi.org/10.1016/0370-2693(69)90525-5

M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98(3), 030001 (2018). https://doi.org/10.1103/PhysRevD.98.030001

P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tórtola, J.W.F. Valle, Phys. Lett. B 782, 633 (2018). https://doi.org/10.1016/j.physletb.2018.06.019

I. Esteban, M.C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni, T. Schwetz, J. High Energy Phys. 01, 106 (2019). https://doi.org/10.1007/JHEP01(2019)106

F. Capozzi, E. Lisi, A. Marrone, A. Palazzo, Prog. Part. Nucl. Phys. 102, 48 (2018). https://doi.org/10.1016/j.ppnp.2018.05.005

I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, A. Zhou, JHEP 09, 178 (2020). https://doi.org/10.1007/JHEP09(2020)178

K.J. Kelly, P.A. Machado, S.J. Parke, Y.F. Perez Gonzalez, R. Zukanovich-Funchal, Phys. Rev. D 103(1), 013004 (2021). https://doi.org/10.1103/PhysRevD.103.013004

K. Abe et al. (T2K Collaboration), Nature 580(7803), 339 (2020). https://doi.org/10.1038/s41586-020-2177-0

M.A. Acero et al. (NOvA Collaboration), Phys. Rev. Lett. 123(15), 151803 (2019). https://doi.org/10.1103/PhysRevLett.123.151803

A. Aurisano, Recent results from MINOS and MINOS+, XXVIII International Conference on Neutrino Physics and Astrophysics (2018). https://doi.org/10.5281/zenodo.1286760

K. Abe et al. (Super-Kamiokande Collaboration), Phys. Rev. D 97(7), 072001 (2018). https://doi.org/10.1103/PhysRevD.97.072001

M.G. Aartsen et al. (IceCube Collaboration), Phys. Rev. Lett. 120(7), 071801 (2018). https://doi.org/10.1103/PhysRevLett.120.071801

P. Dunne, Latest neutrino oscillation results from T2K, XXIX International Conference on Neutrino Physics and Astrophysics (2020). https://doi.org/10.5281/zenodo.4154355

A. Himmel, New oscillation results from the NOvA experiment. XXIX International Conference on Neutrino Physics and Astrophysics (2020). https://doi.org/10.5281/zenodo.3959581

N. Agafonova et al. (OPERA Collaboration), Phys. Rev. Lett. 115(12), 121802 (2015). https://doi.org/10.1103/PhysRevLett.115.121802

N. Agafonova et al. (OPERA Collaboration), Phys. Rev. Lett. 120(21), 211801 (2018). https://doi.org/10.1103/PhysRevLett.120.211801 [Erratum: Phys. Rev. Lett. 121, 139901 (2018)]

Z. Li et al. (Super-Kamiokande Collaboration), Phys. Rev. D 98(5), 052006 (2018). https://doi.org/10.1103/PhysRevD.98.052006

M.G. Aartsen et al. (IceCube Collaboration), Phys. Rev. D 99(3), 032007 (2019). https://doi.org/10.1103/PhysRevD.99.032007

E.K. Akhmedov, S. Razzaque, A.Yu. Smirnov, J. High Energy Phys. 02, 82 (2013). https://doi.org/10.1007/JHEP02(2013)082

L. Wolfenstein, Phys. Rev. D 17, 2369 (1978). https://doi.org/10.1103/PhysRevD.17.2369

S.P. Mikheyev, A.Y. Smirnov, Sov. J. Nucl. Phys. 42, 913 (1985)

S. Adrián-Martínez et al., KM3NeT Collaboration. J. Phys. G 43(8), 084001 (2016). https://doi.org/10.1088/0954-3899/43/8/084001

S. Aiello et al. (KM3NeT Collaboration), JINST 13(05), P05035 (2018). https://doi.org/10.1088/1748-0221/13/05/P05035

S. Aiello et al. (KM3NeT Collaboration), JINST 15(11), P11027 (2020). https://doi.org/10.1088/1748-0221/15/11/P11027

S. Aiello (KM3NeT Collaboration), Comput. Phys. Commun. 256, 107477 (2020). https://doi.org/10.1016/j.cpc.2020.107477

C. Andreopoulos et al., Nucl. Instrum. Methods A 614, 87 (2010). https://doi.org/10.1016/j.nima.2009.12.009

C. Andreopoulos et al., The GENIE neutrino Monte Carlo generator: physics and user manual (2015). arXiv:1510.05494 [hep-ph]

M. Honda, M.S. Athar, T. Kajita, K. Kasahara, S. Midorikawa, Phys. Rev. D 92, 023004 (2015). https://doi.org/10.1103/PhysRevD.92.023004

A.G. Tsirigotis, A. Leisos, S.E. Tzamarias, Nucl. Instrum. Methods A 626–627, S185 (2011). https://doi.org/10.1016/j.nima.2010.06.258

G. Carminati, A. Margiotta, M. Spurio, Comput. Phys. Commun. 179, 915 (2008). https://doi.org/10.1016/j.cpc.2008.07.014

D. Bailey, Monte Carlo tools and analysis methods for understanding the ANTARES experiment and predicting its sensitivity to dark matter. Ph.D. thesis, University of Oxford (2002)

A. Albert et al. (ANTARES Collaboration), JCAP 01, 064 (2021). https://doi.org/10.1088/1475-7516/2021/01/064

M. Ageron et al. (KM3NeT Collaboration), Eur. Phys. J. C 80(2), 99 (2020). https://doi.org/10.1140/epjc/s10052-020-7629-z

S. Hallmann, Sensitivity to atmospheric tau-neutrino appearance and all-flavour search for neutrinos from the Fermi Bubbles with the deep-sea telescopes KM3NeT/ORCA and ANTARES. Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) (2021). https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-157495

L. Quinn, Neutrino mass hierarchy determination with KM3Net/ORCA. Ph.D. thesis, Aix-Marseille University (2018). http://hal.in2p3.fr/tel-02265297

J. Hofestädt, Measuring the neutrino mass hierarchy with the future KM3NeT/ORCA detector. Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) (2017). https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-82770

Y.S. Jeong, M.H. Reno, Phys. Rev. D 82, 033010 (2010). https://doi.org/10.1103/PhysRevD.82.033010

S. Adrián-Martínez et al. (KM3NeT Collaboration), JHEP 05, 008 (2017). https://doi.org/10.1007/JHEP05(2017)008

L. Breiman, Mach. Learn. 45(1), 5 (2001). https://doi.org/10.1023/A:1010933404324

J.A. Formaggio, G.P. Zeller, Rev. Mod. Phys. 84, 1307 (2012). https://doi.org/10.1103/RevModPhys.84.1307

J. Coelho, OscProb neutrino oscillation calculator. https://github.com/joaoabcoelho/OscProb

G. Cowan, K. Cranmer, E. Gross, O. Vitells, Eur. Phys. J. C 71, 1554 (2011). https://doi.org/10.1140/epjc/s10052-011-1554-0 [Erratum: Eur. Phys. J. C 73, 2501 (2013)]

S. Baker, R.D. Cousins, Nucl. Instrum. Methods 221, 437 (1984). https://doi.org/10.1016/0167-5087(84)90016-4

G.D. Barr, T.K. Gaisser, S. Robbins, T. Stanev, Phys. Rev. D 74, 094009 (2006). https://doi.org/10.1103/PhysRevD.74.094009

A. Albert et al. (ANTARES Collaboration), Eur. Phys. J. C 78(8), 669 (2018). https://doi.org/10.1140/epjc/s10052-018-6132-2

A.M. Dziewonski, D.L. Anderson, Phys. Earth Planet. Inter. 25, 297 (1981). https://doi.org/10.1016/0031-9201(81)90046-7

B. Strandberg, S. Hallmann, PoS ICRC2019, 1019 (2019). https://doi.org/10.22323/1.358.1019

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem