Mostrar el registro sencillo del ítem
dc.contributor.author | Billhardt, Holger | es_ES |
dc.contributor.author | Fernández, Alberto | es_ES |
dc.contributor.author | Gómez-Gálvez, Sandra | es_ES |
dc.contributor.author | Martí, Pasqual | es_ES |
dc.contributor.author | Prieto Tejedor, Javier | es_ES |
dc.contributor.author | Ossowski, Sascha | es_ES |
dc.date.accessioned | 2023-01-09T07:38:31Z | |
dc.date.available | 2023-01-09T07:38:31Z | |
dc.date.issued | 2021-04-29 | es_ES |
dc.identifier.isbn | 978-3-030-78900-8 | es_ES |
dc.identifier.issn | 2367-3370 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/191070 | |
dc.description.abstract | [EN] The regulation of mobility and traffic for the transportation of goods and the movement of people is one of the key issues local authorities are faced with, especially in large urban areas. The aim is to provide efficient mobility services that allow people the freedom to move within their cities as well as to facilitate the distribution of goods. However, the provisioning of transportation services should go in line with other general objectives, like reducing emissions and having more healthy living environments. In this context, we argue that one way to achieve objectives is to limit the use of transportation infrastructure elements and to assign the corresponding resources dynamically and in a prioritised manner to the traffic activities that have a higher utility from the point of view of the society, that is, activities that i) produce less pollution and ii) provide more value to society. Different mechanisms that restrict and control the access to an urban area based on pollution levels in that area are already in use in cities such as Madrid or London, but their level of dynamicity and adaptiveness is limited. In this paper we go beyond these approaches, and propose a prioritised access control approach that is highly dynamic, specific to individual vehicles, and that considers social utility or transportation efficiency. We provide a general model for our approach and instantiate it on a use case for last-mile delivery. We accomplish several experiments using the SUMO traffic simulation tool, to evaluate our proposal. | es_ES |
dc.description.sponsorship | This work has been partially supported by the Spanish Ministry of Science, Innovation and Universities, co-funded by EU FEDER Funds, through project grants InEDGEMobility RTI2018-095390-B-C31/32/33 (MCIU/AEI/FEDER, UE) and by the Regional Government of Madrid (grant PEJD-2019-PRE/TIC-16575), cofunded by EU ESF Funds. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer | es_ES |
dc.relation.ispartof | Sustainable Smart Cities and Territories. Lecture Notes in Networks and Systems (LNNS, volume 253) | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Traffic management | es_ES |
dc.subject | Last-mile delivery | es_ES |
dc.subject | Prioritized resource allocation | es_ES |
dc.subject | Agreement technologies | es_ES |
dc.title | Reducing Emissions Prioritising Transport Utility | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Artículo | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1007/978-3-030-78901-5_26 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095390-B-C31/ES/HACIA UNA MOVILIDAD INTELIGENTE Y SOSTENIBLE SOPORTADA POR SISTEMAS MULTI-AGENTES Y EDGE COMPUTING/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CAM//PEJD-2019-PRE%2FTIC-16575/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095390-B-C32/ES/MOVILIDAD INTELIGENTE Y SOSTENIBLE SOPORTADA POR SISTEMAS MULTI-AGENTES Y EDGE COMPUTING/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095390-B-C33/ES/MOVILIDAD INTELIGENTE Y SOSTENIBLE: INFRAESTRUCTURA Y TRANSPORTE COLABORATIVO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Billhardt, H.; Fernández, A.; Gómez-Gálvez, S.; Martí, P.; Prieto Tejedor, J.; Ossowski, S. (2021). Reducing Emissions Prioritising Transport Utility. Springer. 300-311. https://doi.org/10.1007/978-3-030-78901-5_26 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | Sustainable Smart Cities and Territories International Conference (SSCt 2021) | es_ES |
dc.relation.conferencedate | Abril 27-29,2021 | es_ES |
dc.relation.conferenceplace | Doha, Qatar | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/978-3-030-78901-5_26 | es_ES |
dc.description.upvformatpinicio | 300 | es_ES |
dc.description.upvformatpfin | 311 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\450247 | es_ES |
dc.contributor.funder | Comunidad de Madrid | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Botsman, R.: Defining the sharing economy: what is collaborative consumption-and what isn’t? fastcoexist.com. available at http://www.fastcoexist.com/3046119/defining-the-sharing-economywhat-is-collaborative-consumption-and-what-isnt (2015) | es_ES |
dc.description.references | Namazi, E., Li, J., Lu, C.: Intelligent intersection management systems considering autonomous vehicles: a systematic literature review. IEEE Access 7, 91946–91965 (2019) | es_ES |
dc.description.references | Dresner, K., Stone, P.A.: Multiagent approach to autonomous intersection management. J. Artif. Intell. Res. 31, 591–656 (2008) | es_ES |
dc.description.references | Vasirani, M., Ossowski, S.: A market-inspired approach for intersection management in urban road traffic networks. J. Artif. Intell. Res. 43, 621–659 (2012) | es_ES |
dc.description.references | Vergés, J.T.: Analysis and Simulation of Traffic Management Actions for Traffic Emission Reduction. TU, Berlin (2013) | es_ES |
dc.description.references | Lemos, L.L., Pasin, M.: Intersection control in transportation networks: opportunities to minimize air pollution emissions. In: IEEE 19th International Conference on Intelligent Transportation Systems (ITSC) (2016) | es_ES |
dc.description.references | Mascia, M., et al.: Impact of traffic management on black carbon emissions: a microsimulation study. Netw. Spat. Econ. 17, 269–291 (2017) | es_ES |
dc.description.references | Kamishetty, S., Vadlamannati, S., Paruchuri, P.: Towards a better management of urban traffic pollution using a Pareto max flow approach. Transportation Research Part D: Transport and Environment, 79, 102194 (2020) | es_ES |
dc.description.references | Artuñedo, A., del Toro, R.M., Haber, R.E.: Consensus-based cooperative control based on pollution sensing and traffic information for urban traffic networks. Sensors 17(5), 953 (2017) | es_ES |
dc.description.references | Alvarez Lopez, P., et al.: Microscopic traffic simulation using SUMO. In: 21st IEEE International Conference on Intelligent Transportation Systems, Maui, USA, pp. 2575–2582 (2018) | es_ES |