- -

Classifying the Evolving Mask Debate: A Transferable Machine Learning Framework

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Classifying the Evolving Mask Debate: A Transferable Machine Learning Framework

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Warnken, Julia es_ES
dc.contributor.author Gokhale, Swapna S. es_ES
dc.date.accessioned 2023-01-09T08:22:42Z
dc.date.available 2023-01-09T08:22:42Z
dc.date.issued 2022-11-23
dc.identifier.uri http://hdl.handle.net/10251/191099
dc.description.abstract [EN] Anti-maskers represent a community of people that opposes the use of face masks on grounds that they infringe personal freedoms. This community has thoroughly exploited the convenience and reach of online social media platforms such as Facebook and Twitter to spread discordant information about the ineffectiveness and harm caused by masks in order to persuade people to shun their use. Automatic detection and demoting of anti-mask tweets is thus necessary to limit their damage. This is challenging because the mask dialogue continuously evolves with creative arguments that embed emerging knowledge about the virus, changing socio-political landscape, and present policies of public health officers and organizations. Therefore, this paper builds a transferrable machine learning framework that can separate between anti-mask and pro-mask tweets from longitudinal data collected at four epochs during the pandemic. The framework extracts content, emotional, and engagement features that faithfully capture the patterns that are relevant to anti-mask rhetoric, but ignores those related to contextual details. It trains two ensemble learners and two neural network architectures using these features. Ensemble classifiers can identify anti-mask tweets with approximately 80% accuracy and F1-score from both individual and combined data sets. The invariant linguistic features extracted by the framework can thus form the basis of automated classifiers that can efficiently separate other types of falsehoods and misinformation from huge volumes of social media data. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Journal of Computer-Assisted Linguistic Research es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Anti-mask es_ES
dc.subject Classification es_ES
dc.subject Twitter es_ES
dc.subject Longitudinal Data es_ES
dc.subject Machine Learning es_ES
dc.title Classifying the Evolving Mask Debate: A Transferable Machine Learning Framework es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/jclr.2022.17493
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Warnken, J.; Gokhale, SS. (2022). Classifying the Evolving Mask Debate: A Transferable Machine Learning Framework. Journal of Computer-Assisted Linguistic Research. 6:1-18. https://doi.org/10.4995/jclr.2022.17493 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/jclr.2022.17493 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.identifier.eissn 2530-9455
dc.relation.pasarela OJS\17493 es_ES
dc.description.references Ahmed, Wasim, Vidal-Alaball, Josep, Segui, Francesc, and Moreno, Pedro. 2020. "A Social Network Analysis of Tweets Related to Masks during the COVID-19 Pandemic." International Journal of Environmental Research and Public Health, 17: 8. https://doi.org/10.3390/ijerph17218235 es_ES
dc.description.references Al-Ramahi, Mohammad, Noshokaty, Ahmed, El-Gayar, Omar, Nasralah, Tareq, and Wahbeh, Abudllah. 2020. "Public Discourse Against Masks in the COVID-19 Era: Infodemiology Study of Twitter Data" (Preprint). JMIR Public Health and Surveillance, 7. https://doi.org/10.2196/preprints.26780 es_ES
dc.description.references Benamara, Farah, Cesarano, Carmine, Picariello, Antonio, Reforgiato Recupero, Diego, and Subrahmanian, Vs. 2007. "Sentiment analysis: Adjectives and adverbs are better than adjectives alone." In International Workshop on Web and Social Media. es_ES
dc.description.references Breen, Kerry. 2021. "How Long Do We Need to Wear Masks? Here's What Experts Predict". https://www.today.com/health/how-long-will-we-need-wear-masks-here-s-what-t200771. Accessed: 2022-01-31. es_ES
dc.description.references Buitinck, Lars, Louppe, Gilles, Blondel, Mathieu, Pedregosa, Fabian, Mueller, Andreas, Grisel, Olivier, Niculae, Vlad, Prettenhofer, Peter, Gramfort, Alexandere, Grobler, Jacques, Layton, Robert, Vanderplas, Jake, Joly, Arnaud, Holt, Brian, and Varoquaux, Gael. 2013. "API design for machine learning software: Experiences from the scikit-learn project." Proc. of ECML PKDD Workshop: Languages for Data Mining and Machine Learning, 108-122. es_ES
dc.description.references CDC. 2020. "CDC Calls on Americans to Wear Masks to Prevent Covid-19 Spread." https://www.cdc.gov/media/releases/2020/p0714-americans-to-wear-masks.html. Accessed: 2021-01-21. es_ES
dc.description.references Cerbin, Luca, DeJesus, Jason, Warnken, Julia, and Gokhale, Swapna. 2021. "Unmasking the Mask Debate on Social Media." In 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC), 677-682. https://doi.org/10.1109/COMPSAC51774.2021.00098 es_ES
dc.description.references Cheng, K. K., Lam, Tai, and Leung, Chi. 2020. "Wearing face masks in the community during the COVID-19 pandemic: altruism and solidarity." The Lancet. 10.1016/S0140-6736(20)30918-1. es_ES
dc.description.references Chollet, Francois et al. 2015. Keras. es_ES
dc.description.references Cotfas, Liviu-Adrian, Delcea, Camelia, Gherai, Rare, and Roxin, Ioan. 2021. "Unmasking People's Opinions behind Mask-Wearing during COVID-19 Pandemic: A Twitter Stance Analysis." Symmetry, 13(11): 1995. https://doi.org/10.3390/sym13111995 es_ES
dc.description.references Delashmit, Walter H., and Manry, Michael T. 2005. "Recent Developments in Multilayer Perceptron Neural Networks." In the 7th Annual Memphis Area Engineering and Science Conference. es_ES
dc.description.references Devlin, Jacob, Chang, Ming-Wei, Lee, Kenton, and Toutanova, Kristina. 2018. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." CoRR, abs/1810.04805. es_ES
dc.description.references Ernst, Diana. 2021. "CDC Reverses Course on Masks for Fully Vaccinated in Light of SARS-CoV-2 Variant." https://www.hematologyadvisor.com/general-medicine/cdc-reverse-course-on-masks-for-fullyvaccinated-in-light-of-sars-cov-2-variants/. Accessed: 2022-01-05. es_ES
dc.description.references Freidman, Jerome H. 2001. "Greedy function approximation: a gradient boosting machine." Annals of Statistics, 1189-1232. https://doi.org/10.1214/aos/1013203451 es_ES
dc.description.references Gabe, Nicole, and Hill, Drew. 2021. "New Version of Mask Debate Asks if Fully Vaccinated People Still Need to Wear Them." https://www.winknews.com/2021/03/09/a-new-version-of-the-mask-debate-asks-if-fully-vaccinated-people-still-need-to-wear-them/. Accessed: 2022-01-31. es_ES
dc.description.references Godoy, Maria. 2020. "Yes, Wearing Masks Helps, Here's Why." https://www.npr.org/sections/health-shots/2020/06/ 21/880832213/. Accessed: 2021-01-21. es_ES
dc.description.references He, Lu, He, Changyang, Reynolds, Tara L., Bai, Qiushi, Huang, Yicong, Li, Chen, Zheng, Kai, and Chen, Yunan. 2021. "Why do people oppose mask wearing? A comprehensive analysis of U.S. tweets during the COVID-19 pandemic." Journal of the American Medical Informatics Association, 28: 1564-1573. https://doi.org/10.1093/jamia/ocab047 es_ES
dc.description.references Hilder, Alex. 2021. "Fauci: Sen. Rand Paul is Dead Wrong in Assuming Masks Aren't Needed After Vaccination". https://www.thedenverchannel.com/news/national/coronavirus/fauci-sen-rand-paul-is-dead-wrong-in-assuming-masks-arent-needed-after-vaccination. Accessed: 2022-01-31. es_ES
dc.description.references Hochreiter, Sepp, and Schmidhuber Jurgen. 1997. "Long Short-Term Memory." Neural Computation, 9(8): 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735 es_ES
dc.description.references Hutto, C., and Gilbert, Eric. 2014. "VADER: A Parsimonious Rule-Based Model for Sentiment Analysis of Social Media Text." Proceedings of the International AAAI Conference on Web and Social Media, 8(1): 216-225. https://doi.org/10.1609/icwsm.v8i1.14550 es_ES
dc.description.references Kearney, Michael W. 2020. "R: Collecting and Analyzing Twitter Data." https://cran.r-project.org/web/packages/rtweet/rtweet.pdf https://doi.org/10.21105/joss.01829 es_ES
dc.description.references Kessler, Glen. 2021. "The GOP's Attack on the CDC's Mask Reversal and a Study from India." https: //www.washingtonpost.com/politics/2021/08/12/gops-attack-cdcs-mask-reversal-study-india/. Accessed: 2022- 01-05. es_ES
dc.description.references Kiely, Eugene. 2021. "Misinformation About Face Masks." https://www.factcheck.org/2021/08/scicheck-misinformation-about-face-masks/. Accessed: 2022-01-05. es_ES
dc.description.references Lang, Jun, Erickson, Wesley, and Jing-Schmidt, Zuo. 2021. "#MaskOn! #MaskOff! Digital polarization of mask-wearing in the United States during COVID-19." PLoS ONE, 16: e0250817. https://doi.org/10.1371/journal.pone.0250817 es_ES
dc.description.references Liaw, Andrew, and Wiener, Matthew. 2002. "Classification and Regression by randomForest." R News. 3:18-22. es_ES
dc.description.references Loper, Edward, and Bird, Steven. 2002. "NLTK: The Natural Language Toolkit." CoRR, cs.CL/0205028. https://doi.org/10.3115/1118108.1118117 es_ES
dc.description.references Mikolov, Tomas, Sutskever, Ilya, Chen, Kai, Corrado, Greg, and Dean, Jeffrey. 2013. "Distributed Representations of Words and Phrases and their Compositionality." CoRR, abs/1310.4546. es_ES
dc.description.references Morrison, Sara. 2020. "Biden Wants A National Mask Mandate. Can He Do That?" https://www.vox.com/2020/8/21/21395570/biden-mask-mandate-for-all-national-states. Accessed: 2021-01-21. es_ES
dc.description.references Nicholson, Chris. 2019. "A Beginner's Guide to Word2Vec and Neural Word Embeddings." https://pathmind.com/wiki/ word2vec. Accessed: 2022-04-02. es_ES
dc.description.references Novitsky, Mikala. 2021. "Governor Ducey's Decision Refuels Mask Debate in Schools." https: //www.kold.com/2021/04/20/governor-duceys-decision-refuels-mask-debate-schools/. Accessed: 2022-01-31. es_ES
dc.description.references Pascual-Ferra, Paola, Alperstein, Neil, Barnett, Daniel, and Rimal, Rajeev. 2021. "Toxicity and verbal aggression on social media: Polarized discourse on wearing face masks during the COVID-19 pandemic." Big Data & Society, 8. https://doi.org/10.1177/20539517211023533 es_ES
dc.description.references Paul, Nijhum, and Gokhale, Swapna. 2020. "Analysis and Classification of Vaccine Dialogue in the Coronavirus Era." In 2020 IEEE International Conference on Big Data (Big Data), 3220-3227. https://doi.org/10.1109/BigData50022.2020.9377888 es_ES
dc.description.references Pedregosa, Fabian, Varoquaux, Gael, Gramfort, Alexandre, Michel, Vincent, Thirion, Bertrand, Grisel, Olivier, Blondel, Mathieu, Prettenhofer, Peter, Weiss, Ron, Dubourg, Vincent et al. 2011. "Scikit-learn: Machine learning in Python." Journal of Machine Learning Research, 12(Oct): 2825-2830. es_ES
dc.description.references Perry, Susan. 2020. "Social Media Users are More Likely to Believe False Information About Covid-19 and to Ignore Public Health Advice, Study Suggests". https://www.minnpost.com/second-opinion/2020/07/social-media-users-are-more-likely-to-believe-false-information-about-covid-19-and-to-ignore-public-health-advice-study-suggests/. Accessed: 2021-01-21. es_ES
dc.description.references Rehurek, Radim, and Sojka, Petr. 2010. "Software Framework for Topic Modelling with Large Corpora." 45-50. 10.13140/2.1.2393.1847. es_ES
dc.description.references Reuters. 2021. "Misinformation is Serious Threat to Public Health Surgeon General Warns". https://www.nbcnews.com/tech/tech-news/misinformation-serious-threat-public-health-surgeon-general-warns-rcna1428. Accessed: 2022-01-05. es_ES
dc.description.references Shen, Yanqing. 2020. "Covid-19 Outbreak: Tweet Analysis on Face Masks." https://towardsdatascience.com/covid-19-outbreak-tweet-analysis-on-face-masks-27ef5db199dd. Accessed: 2021-01-21. es_ES
dc.description.references Staff, Knau. 2020. "Twitter Analysis Shows Arizona is #1 in Anti-Face Mask Activity." https://www.knau.org/post/ twitter-analysis-shows-arizona-1-anti-face-mask-activity. Accessed: 2021-01-21. es_ES
dc.description.references Taylor, Adam. 2020. "How the Split Over Masks Sums Up America's Chaotic Coronavirus Response." https://www.washingtonpost.com/world/2020/06/25/face-masks-america-divided/. Accessed: 2021-01-21. es_ES
dc.description.references Zafarani, Reza, Abbasi, Mohammad Ali, and Liu, Huan. 2014. "Social media mining: an introduction." Cambridge University Press. https://doi.org/10.1017/CBO9781139088510 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem