- -

Character Extraction and Character Type Identification from Summarised Story Plots

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Character Extraction and Character Type Identification from Summarised Story Plots

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Srinivasan, Vardhini es_ES
dc.contributor.author Power, Aurelia es_ES
dc.date.accessioned 2023-01-09T08:24:51Z
dc.date.available 2023-01-09T08:24:51Z
dc.date.issued 2022-11-23
dc.identifier.uri http://hdl.handle.net/10251/191100
dc.description.abstract [EN] Identifying the characters from free-form text and understanding the roles and relationships between them is an evolving area of research. They have a wide range of applications, from summarising narrations to understanding the social network from social media tweets, which can help in automation and improve the experience of AI systems like chatbots and much more. The aim of this research is twofold. Firstly, we aim to develop an effective method of extracting characters from a story summary, to develop a set of relevant features, then, using supervised learning algorithms, to identify the character types. Secondly, we aim to examine the efficacy of unsupervised learning algorithms in type identification, as it is challenging to find a dataset with a predetermined list of characters, roles, and relationships that are essential for supervised learning. To do so, we used summary plots of fictional stories to experiment and evaluate our approach. Our character extraction approach successfully improved on the performance reported by existing work, with an average F1-score of 0.86. Supervised learning algorithms successfully identified the character types and achieved an overall average F1-score of 0.94. However, the clustering algorithms identified more than three clusters, indicating that more research is needed to improve their efficacy. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Journal of Computer-Assisted Linguistic Research es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Character extraction es_ES
dc.subject Character type identification es_ES
dc.subject Coreference resolution es_ES
dc.subject Classification es_ES
dc.subject Clustering es_ES
dc.title Character Extraction and Character Type Identification from Summarised Story Plots es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/jclr.2022.17835
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Srinivasan, V.; Power, A. (2022). Character Extraction and Character Type Identification from Summarised Story Plots. Journal of Computer-Assisted Linguistic Research. 6:19-41. https://doi.org/10.4995/jclr.2022.17835 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/jclr.2022.17835 es_ES
dc.description.upvformatpinicio 19 es_ES
dc.description.upvformatpfin 41 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.identifier.eissn 2530-9455
dc.relation.pasarela OJS\17835 es_ES
dc.description.references Agarwal, Apoorv, and Owen Rambow. 2010. "Automatic detection and classification of social events." In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, 1024-1034. es_ES
dc.description.references Baccianella, Stefano, Andrea Esuli, and Fabrizio Sebastiani. 2010. "Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining." In Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10). es_ES
dc.description.references Bamman, David, Brendan O'Connor, and Noah A. Smith. "Learning latent personas of film characters. 2013." In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics 1, 352-361. es_ES
dc.description.references Calix, Ricardo A., Leili Javadpout, Mehdi Khazaeli, and Gerald M. Knapp. 2013."Automatic detection of nominal entities in speech for enriched content search." In The Twenty-Sixth International FLAIRS Conference. es_ES
dc.description.references Ceri, Stefano, Piero Fraternali, Aldo Bongio, Marco Brambilla, Sara Comai, and Maristella Matera. 2003. Morgan Kaufmann series in data management systems: Designing data-intensive Web applications. Morgan Kaufmann, 34-36. es_ES
dc.description.references Chaturvedi, Snigdha, Shashank Srivastava, Hal Daume III, and Chris Dyer. 2016. "Modelling evolving relationships between characters in literary novels." In Proceedings of the AAAI Conference on Artificial Intelligence, 30. https://doi.org/10.1609/aaai.v30i1.10358 es_ES
dc.description.references Chen, Yu-Hsin, and Jinho D. Choi. 2016. "Character identification on multiparty conversation: Identifying mentions of characters in tv shows." In Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue, 90-100. https://doi.org/10.18653/v1/W16-3612 es_ES
dc.description.references Chollet, Francois. 2021. Deep Learning with Python. New York: Manning Publication. es_ES
dc.description.references Feinerer, Ingo, Kurt Hornik, Mike Wallace, and Maintainer Kurt Hornik. 2020. "Package 'wordnet'." es_ES
dc.description.references Fernandez, Matt, Michael Peterson, and Ben Ulmer. 2015. "Extracting social network from literature to predict antagonist and protagonist." Recuperado de: https://nlp. stanford. edu/courses/cs224n/2015/reports/14. pdf. es_ES
dc.description.references Finkel, Jenny R., Trond Grenager, and Christopher Manning. 2005. "Incorporating Non-local Information into Information Extraction Systems by Gibbs Sampling". In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL 2005), 363-370. https://doi.org/10.3115/1219840.1219885 es_ES
dc.description.references Grandini, Margherita, Enrico Bagli, and Giorgio Visani. 2020. "Metrics for multi-class classification: an overview." arXiv preprint arXiv:2008.05756. es_ES
dc.description.references Hachey, Ben, Will Radford, Joel Nothman, Matthew Honnibal, and James R. Curran. 2013. "Evaluating entity linking with wikipedia." Artificial intelligence 194: 130-150. https://doi.org/10.1016/j.artint.2012.04.005 es_ES
dc.description.references Jahan, Labiba, Geeticka Chauhan, and Mark A. Finlayson. 2018. "A new approach to animacy detection." In Proceedings of the 27th International Conference on Computational Linguistics. es_ES
dc.description.references Jahan, Labiba, and Mark Finlayson. 2019. "Character identification refined: A proposal. " In Proceedings of the First Workshop on Narrative Understanding, 12-18. https://doi.org/10.18653/v1/W19-2402 es_ES
dc.description.references Jahan, Labiba, Rahul Mittal, W. Victor Yarlott, and Mark Finlayson. 2020. "A straightforward approach to narratologically grounded character identification." In Proceedings of the 28th International Conference on Computational Linguistics, 6089-6100. https://doi.org/10.18653/v1/2020.coling-main.536 es_ES
dc.description.references Jung, Jason J., Eunsoon You, and Seung-Bo Park. 2013. "Emotion-based character clustering for managing story-based contents: a cinemetric analysis." Multimedia tools and applications 65: 29-45. https://doi.org/10.1007/s11042-012-1133-x es_ES
dc.description.references Kong, Fang, Guodong Zhou, Longhua Qian, and Qiaoming Zhu. 2010. "Dependency-driven anaphoricity determination for coreference resolution." In Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010), 599-607. https://doi.org/10.1109/IALP.2010.25 es_ES
dc.description.references Labatut, Vincent, and Xavier Bost. 2019. "Extraction and analysis of fictional character networks: A survey." ACM Computing Surveys (CSUR) 52: 1-40. https://doi.org/10.1145/3344548 es_ES
dc.description.references Liang, Tyne, and Dian-Song Wu. 2004. "Automatic pronominal anaphora resolution in English texts." In International Journal of Computational Linguistics & Chinese Language Processing, Volume 9, Number 1, February 2004: Special Issue on Selected Papers from ROCLING XV, 21-40. es_ES
dc.description.references Manning, Christopher D., Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven Bethard, and David McClosky. 2014. "The Stanford CoreNLP natural language processing toolkit." In Proceedings of 52nd annual meeting of the association for computational linguistics: system demonstrations, 55-60. https://doi.org/10.3115/v1/P14-5010 es_ES
dc.description.references Rosenberg, Andrew, and Julia Hirschberg. 2007. "V-measure: A conditional entropy-based external cluster evaluation measure." In Proceedings of the 2007 joint conference on empirical methods in natural language processing and computational natural language learning (EMNLP-CoNLL), 410-420. es_ES
dc.description.references Sukthanker, Rhea, Soujanya Poria, Erik Cambria, and Ramkumar Thirunavukarasu. 2020. "Anaphora and coreference resolution: A review." Information Fusion 59: 139-162. https://doi.org/10.1016/j.inffus.2020.01.010 es_ES
dc.description.references Talib, Ismail S. 2010. "Narrative theory: A brief introduction." https://courses.nus.edu. sg/course/ellibst/NarrativeTheory/ . es_ES
dc.description.references Vala, Hardik, David Jurgens, Andrew Piper, and Derek Ruths. 2015. "Mr. bennet, his coachman, and the archbishop walk into a bar but only one of them gets recognized: On the difficulty of detecting characters in literary texts." In Proceedings of the 2015 conference on empirical methods in natural language processing, 769-774. https://doi.org/10.18653/v1/D15-1088 es_ES
dc.description.references Valls-Vargas, Josep, Santiago Ontanón, and Jichen Zhu. 2014. "Toward automatic character identification in unannotated narrative text." In Seventh intelligent narrative technologies workshop. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem