- -

Extracting Features from Textual Data in Class Imbalance Problems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Extracting Features from Textual Data in Class Imbalance Problems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aravamuthan, Sarang es_ES
dc.contributor.author Jogalekar, Prasad es_ES
dc.contributor.author Lee, Jonghae es_ES
dc.date.accessioned 2023-01-09T08:27:16Z
dc.date.available 2023-01-09T08:27:16Z
dc.date.issued 2022-11-23
dc.identifier.uri http://hdl.handle.net/10251/191101
dc.description.abstract [EN] We address class imbalance problems. These are classification problems where the target variable is binary, and one class dominates over the other. A central objective in these problems is to identify features that yield models with high precision/recall values, the standard yardsticks for assessing such models. Our features are extracted from the textual data inherent in such problems. We use n-gram frequencies as features and introduce a discrepancy score that measures the efficacy of an n-gram in highlighting the minority class. The frequency counts of n-grams with the highest discrepancy scores are used as features to construct models with the desired metrics. According to the best practices followed by the services industry, many customer support tickets will get audited and tagged as contract-compliant whereas some will be tagged as over-delivered . Based on in-field data, we use a random forest classifier and perform a randomized grid search over the model hyperparameters. The model scoring is performed using an scoring function. Our objective is to minimize the follow-up costs by optimizing the recall score while maintaining a base-level precision score. The final optimized model achieves an acceptable recall score while staying above the target precision. We validate our feature selection method by comparing our model with one constructed using frequency counts of n-grams chosen randomly. We propose extensions of our feature extraction method to general classification (binary and multi-class) and regression problems. The discrepancy score is one measure of dissimilarity of distributions and other (more general) measures that we formulate could potentially yield more effective models. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Journal of Computer-Assisted Linguistic Research es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Class imbalance es_ES
dc.subject Feature selection es_ES
dc.subject N-gram frequency es_ES
dc.subject NLP techniques es_ES
dc.subject Random forest classifier es_ES
dc.title Extracting Features from Textual Data in Class Imbalance Problems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/jclr.2022.18200
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Aravamuthan, S.; Jogalekar, P.; Lee, J. (2022). Extracting Features from Textual Data in Class Imbalance Problems. Journal of Computer-Assisted Linguistic Research. 6:42-58. https://doi.org/10.4995/jclr.2022.18200 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/jclr.2022.18200 es_ES
dc.description.upvformatpinicio 42 es_ES
dc.description.upvformatpfin 58 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.identifier.eissn 2530-9455
dc.relation.pasarela OJS\18200 es_ES
dc.description.references Batuwita, Rukshan, and Vasile Palade. 2010. "FSVM-CIL: Fuzzy Support Vector Machines for Class Imbalance Learning." IEEE Transactions on Fuzzy Systems 18: 558-571. https://doi.org/10.1109/TFUZZ.2010.2042721 es_ES
dc.description.references Bi, Jingjun, and Chongsheng Zhang. 2018. "An empirical comparison on state-of-the-art multi-class imbalance learning algorithms and a new diversified ensemble learning scheme." Knowledge-Based Systems 158: 81-93. https://doi.org/10.1016/j.knosys.2018.05.037 es_ES
dc.description.references Brownlee, Jason. 2020. "Imbalanced Classification with Python: Better Metrics, Balance Skewed Classes, Cost-Sensitive Learning." Machine Learning Mastery. https://books.google.com/books/about/Imbalanced_Classification_with_Python.html?id=jaXJDwAAQBAJ es_ES
dc.description.references Chawla, Nitesh V. 2009. "Data Mining for Imbalanced Datasets: An Overview." In Data Mining and Knowledge Discovery Handbook, edited by O. Maimon and L. Rokach, Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09823-4_45 es_ES
dc.description.references He, Haibo, and Edwardo A. Garcia. 2009. "Learning from Imbalanced Data." IEEE Transactions on Knowledge and Data Engineering 21: 1263-1284. https://doi.org/10.1109/TKDE.2008.239 es_ES
dc.description.references Ho, Tin K., and M. Basu. 2002. "Complexity measures of supervised classification problems." IEEE Transactions on Pattern Analysis and Machine Intelligence 24: 289-300. https://doi.org/10.1109/34.990132 es_ES
dc.description.references Liu, Xu-Ling, Jianxin Wu, and Zhi-Hua Zhou. 2009. "Exploratory Undersampling for Class-Imbalance Learning." IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics 39: 539-550. https://doi.org/10.1109/TSMCB.2008.2007853 es_ES
dc.description.references Prati, Ronaldo C., Gustavo E.A.P.A. Batista and Maria C. Monard. 2004. "Class imbalances versus class overlapping: an analysis of a learning system behavior." 4th Mexican International Conference on Artificial Intelligence. LNCS, Mexico City, 2972: 312-321. https://doi.org/10.1007/978-3-540-24694-7_32 es_ES
dc.description.references Rivera, Gilberto, Rogelio Florencia, Vicente García, Alejandro Ruiz, and J. Patricia Sánchez-Solís. 2020. "News Classification for Identifying Traffic Incident Points in a Spanish-Speaking Country: A Real-World Case Study of Class Imbalance Learning." Applied Sciences 10, 6253. https://doi.org/10.3390/app10186253 es_ES
dc.description.references Santos, Miriam S, Jastin Pompeu Soares, Pedro Henriques Abreu, Hélder Araújo and João Santos. 2018. "Cross-Validation for Imbalanced Datasets: Avoiding Overoptimistic and Overfitting Approaches [Research Frontier]." IEEE Computational Intelligence Magazine, 13: 59-76. https://doi.org/10.1109/MCI.2018.2866730 es_ES
dc.description.references Santos, Miriam S, Pedro Henriques Abreu, Nathalie Japkowicz, Alberto Fernández, and João Santos. 2023. "A unifying view of class overlap and imbalance: Key concepts, multi-view panorama, and open avenues for research." Information Fusion 89: 228-253. https://doi.org/10.1016/j.inffus.2022.08.017 es_ES
dc.description.references Sarmanova, Akkenzhe, and Songül Albayrak. 2013. "Alleviating Class Imbalance Problem In Data Mining." 21st Signal Processing and Communications Applications Conference (SIU) 1-4. https://doi.org/10.1109/SIU.2013.6531574 es_ES
dc.description.references Soda, Paolo. 2011. "A multi-objective optimisation approach for class imbalance learning." Pattern Recognition 44: 1801-1810. https://doi.org/10.1016/j.patcog.2011.01.015 es_ES
dc.description.references Sotiropoulos, Dionysios, Christos Giannoulis, and George A. Tsihrintzis. 2014 "A comparative study of one-class classifiers in machine learning problems with extreme class imbalance." The 5th International Conference on Information, Intelligence, Systems and Applications 362-364. https://doi.org/10.1109/IISA.2014.6878723 es_ES
dc.description.references Tahvili, Sahar, Leo Hatvani, Enislay Ramentol, Rita Pimentel, Wasif Afzal, and Francisco Herrera. 2020. "A novel methodology to classify test cases using natural language processing and imbalanced learning." Engineering Applications of Artificial Intelligence, 95, 103878. https://doi.org/10.1016/j.engappai.2020.103878 es_ES
dc.description.references Wang, Shuo, Leandro L. Minku, and Xin Yao. 2015. "Resampling-Based Ensemble Methods for Online Class Imbalance Learning." IEEE Transactions on Knowledge and Data Engineering 27: 1356-1368. https://doi.org/10.1109/TKDE.2014.2345380 es_ES
dc.description.references Wang, Shuo, Leandro L. Minku, and Xin Yao. 2018. "A Systematic Study of Online Class Imbalance Learning With Concept Drift." IEEE Transactions on Neural Networks and Learning Systems 29: 4802-4821. https://doi.org/10.1109/TNNLS.2017.2771290 es_ES
dc.description.references Wang, Shuo, and Xin Yao. 2013. "Using Class Imbalance Learning for Software Defect Prediction." IEEE Transactions on Reliability 62: 434-443. https://doi.org/10.1109/TR.2013.2259203 es_ES
dc.description.references Zhang, Chongsheng, Jingjun Bi, Shixin Xu, Enislay Ramentol, Gaojuan Fan, Baojun Qiao, and Hamido Fujita. 2019. "Multi-Imbalance: An open-source software for multi-class imbalance learning." Knowledge-Based Systems 174: 137-143. https://doi.org/10.1016/j.knosys.2019.03.001 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem