Mostrar el registro sencillo del ítem
dc.contributor.author | Ballester Bolinches, Adolfo | es_ES |
dc.contributor.author | Esteban Romero, Ramón | es_ES |
dc.contributor.author | Ragland, Matthew F. | es_ES |
dc.date.accessioned | 2013-01-30T09:47:09Z | |
dc.date.available | 2013-01-30T09:47:09Z | |
dc.date.issued | 2007-03 | |
dc.identifier.issn | 1433-5883 | |
dc.identifier.uri | http://hdl.handle.net/10251/19118 | |
dc.description | This paper has been published in Journal of Group Theory, 10(2):205-210 (2007). Copyright 2007 by Walter de Gruyter. The final publication is available at www.degruyter.com. http://dx.doi.org/10.1515/JGT.2007.016 http://www.degruyter.com/view/j/jgth.2007.10.issue-2/jgt.2007.016/jgt.2007.016.xml | es_ES |
dc.description.abstract | [EN] A finite group G is said to be a PST-group if, for subgroups H and K of G with H Sylow-permutable in K and K Sylow-permutable in G, it is always the case that H is Sylow-permutable in G. A group G is a T*-group if, for subgroups H and K of G with H normal in K and K normal in G, it is always the case that H is Sylow-permutable in G. In this paper, we show that finite PST-groups and finite T*-groups are one and the same. A new characterisation of soluble PST-groups is also presented. | es_ES |
dc.description.sponsorship | Supported by Grant MTM2004-08219-C02-02 from Ministerio de Educación y Ciencia (Spain) and FEDER (European Union). | |
dc.format.extent | 205-210 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Walter de Gruyter | es_ES |
dc.relation.ispartof | Journal of Group Theory | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Finite group | es_ES |
dc.subject | Sylow-permutable subgroup | es_ES |
dc.subject | Transitive normality | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | A note on finite PST-groups | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1515/JGT.2007.016 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//MTM2004-08219-C02-02/ES/ESTRUCTURA NORMAL Y ARITMETICA DE LOS GRUPOS II/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada | es_ES |
dc.description.bibliographicCitation | Ballester Bolinches, A.; Esteban Romero, R.; Ragland, MF. (2007). A note on finite PST-groups. Journal of Group Theory. 2(10). https://doi.org/10.1515/JGT.2007.016 | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1515/JGT.2007.016 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2 | es_ES |
dc.description.issue | 10 | es_ES |
dc.identifier.eissn | 1435-4446 | |
dc.contributor.funder | Ministerio de Educación y Ciencia | |
dc.description.references | Agrawal, R. K. (1975). Finite Groups whose Subnormal Subgroups Permute with all Sylow Subgroups. Proceedings of the American Mathematical Society, 47(1), 77. doi:10.2307/2040211 | es_ES |
dc.description.references | Alejandre, M. J., Ballester-Bolinches, A., & Pedraza-Aguilera, M. . (2001). Finite Soluble Groups with Permutable Subnormal Subgroups. Journal of Algebra, 240(2), 705-722. doi:10.1006/jabr.2001.8732 | es_ES |
dc.description.references | Asaad, M., & Csörgö, P. (1997). Acta Mathematica Hungarica, 74(3), 235-243. doi:10.1023/a:1006563901921 | es_ES |
dc.description.references | Ballester-Bolinches, A., & Esteban-Romero, R. (2002). Sylow Permutable Subnormal Subgroups of Finite Groups. Journal of Algebra, 251(2), 727-738. doi:10.1006/jabr.2001.9138 | es_ES |
dc.description.references | Ballester-Bolinches, A., & Esteban-Romero, R. (2003). On finite J-groups. Journal of the Australian Mathematical Society, 75(2), 181-192. doi:10.1017/s1446788700003712 | es_ES |
dc.description.references | Beidleman, J. C., Brewster, B., & Robinson, D. J. S. (1999). Criteria for Permutability to Be Transitive in Finite Groups. Journal of Algebra, 222(2), 400-412. doi:10.1006/jabr.1998.7964 | es_ES |
dc.description.references | Kegel, O. H. (1962). Sylow-Gruppen und Subnormalteiler endlicher Gruppen. Mathematische Zeitschrift, 78(1), 205-221. doi:10.1007/bf01195169 | es_ES |
dc.description.references | Robinson, D. J. S. (2001). The structure of finite groups in which permutability is a transitive relation. Journal of the Australian Mathematical Society, 70(2), 143-160. doi:10.1017/s1446788700002573 | es_ES |
dc.description.references | Robinson, D. J. S. (2002). Ukrainian Mathematical Journal, 54(6), 1038-1049. doi:10.1023/a:1021724622826 | es_ES |