- -

A note on finite PST-groups

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A note on finite PST-groups

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ballester Bolinches, Adolfo es_ES
dc.contributor.author Esteban Romero, Ramón es_ES
dc.contributor.author Ragland, Matthew F. es_ES
dc.date.accessioned 2013-01-30T09:47:09Z
dc.date.available 2013-01-30T09:47:09Z
dc.date.issued 2007-03
dc.identifier.issn 1433-5883
dc.identifier.uri http://hdl.handle.net/10251/19118
dc.description This paper has been published in Journal of Group Theory, 10(2):205-210 (2007). Copyright 2007 by Walter de Gruyter. The final publication is available at www.degruyter.com. http://dx.doi.org/10.1515/JGT.2007.016 http://www.degruyter.com/view/j/jgth.2007.10.issue-2/jgt.2007.016/jgt.2007.016.xml es_ES
dc.description.abstract [EN] A finite group G is said to be a PST-group if, for subgroups H and K of G with H Sylow-permutable in K and K Sylow-permutable in G, it is always the case that H is Sylow-permutable in G. A group G is a T*-group if, for subgroups H and K of G with H normal in K and K normal in G, it is always the case that H is Sylow-permutable in G. In this paper, we show that finite PST-groups and finite T*-groups are one and the same. A new characterisation of soluble PST-groups is also presented. es_ES
dc.description.sponsorship Supported by Grant MTM2004-08219-C02-02 from Ministerio de Educación y Ciencia (Spain) and FEDER (European Union).
dc.format.extent 205-210 es_ES
dc.language Inglés es_ES
dc.publisher Walter de Gruyter es_ES
dc.relation.ispartof Journal of Group Theory es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Finite group es_ES
dc.subject Sylow-permutable subgroup es_ES
dc.subject Transitive normality es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A note on finite PST-groups es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1515/JGT.2007.016
dc.relation.projectID info:eu-repo/grantAgreement/MEC//MTM2004-08219-C02-02/ES/ESTRUCTURA NORMAL Y ARITMETICA DE LOS GRUPOS II/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.description.bibliographicCitation Ballester Bolinches, A.; Esteban Romero, R.; Ragland, MF. (2007). A note on finite PST-groups. Journal of Group Theory. 2(10). https://doi.org/10.1515/JGT.2007.016 es_ES
dc.relation.publisherversion http://dx.doi.org/10.1515/JGT.2007.016 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2 es_ES
dc.description.issue 10 es_ES
dc.identifier.eissn 1435-4446
dc.contributor.funder Ministerio de Educación y Ciencia
dc.description.references Agrawal, R. K. (1975). Finite Groups whose Subnormal Subgroups Permute with all Sylow Subgroups. Proceedings of the American Mathematical Society, 47(1), 77. doi:10.2307/2040211 es_ES
dc.description.references Alejandre, M. J., Ballester-Bolinches, A., & Pedraza-Aguilera, M. . (2001). Finite Soluble Groups with Permutable Subnormal Subgroups. Journal of Algebra, 240(2), 705-722. doi:10.1006/jabr.2001.8732 es_ES
dc.description.references Asaad, M., & Csörgö, P. (1997). Acta Mathematica Hungarica, 74(3), 235-243. doi:10.1023/a:1006563901921 es_ES
dc.description.references Ballester-Bolinches, A., & Esteban-Romero, R. (2002). Sylow Permutable Subnormal Subgroups of Finite Groups. Journal of Algebra, 251(2), 727-738. doi:10.1006/jabr.2001.9138 es_ES
dc.description.references Ballester-Bolinches, A., & Esteban-Romero, R. (2003). On finite J-groups. Journal of the Australian Mathematical Society, 75(2), 181-192. doi:10.1017/s1446788700003712 es_ES
dc.description.references Beidleman, J. C., Brewster, B., & Robinson, D. J. S. (1999). Criteria for Permutability to Be Transitive in Finite Groups. Journal of Algebra, 222(2), 400-412. doi:10.1006/jabr.1998.7964 es_ES
dc.description.references Kegel, O. H. (1962). Sylow-Gruppen und Subnormalteiler endlicher Gruppen. Mathematische Zeitschrift, 78(1), 205-221. doi:10.1007/bf01195169 es_ES
dc.description.references Robinson, D. J. S. (2001). The structure of finite groups in which permutability is a transitive relation. Journal of the Australian Mathematical Society, 70(2), 143-160. doi:10.1017/s1446788700002573 es_ES
dc.description.references Robinson, D. J. S. (2002). Ukrainian Mathematical Journal, 54(6), 1038-1049. doi:10.1023/a:1021724622826 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem