- -

Remarks on the representation theory of the Moyal plane

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Remarks on the representation theory of the Moyal plane

Mostrar el registro completo del ítem

Isidro San Juan, JM.; Fernández De Córdoba Castellá, PJ.; Rivera Rebolledo, JM.; González-Santander Martínez, JL. (2011). Remarks on the representation theory of the Moyal plane. Advances in Mathematical Physics. 1-9. https://doi.org/10.1155/2011/635790

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/19121

Ficheros en el ítem

Metadatos del ítem

Título: Remarks on the representation theory of the Moyal plane
Autor: Isidro San Juan, José María Fernández de Córdoba Castellá, Pedro José RIVERA REBOLLEDO, JOSE MANUEL González-Santander Martínez, Juan Luis
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
We present an explicit construction of a unitary representation of the commutator algebra satisfied by position and momentum operators on the Moyal plane.
Derechos de uso: Reserva de todos los derechos
Fuente:
Advances in Mathematical Physics. (issn: 1687-9139 )
DOI: 10.1155/2011/635790
Editorial:
Hindawi Publishing Corporation
Versión del editor: http://www.hindawi.com/journals/amp/2011/635790/
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-06-09/
Agradecimientos:
The authors would like to thank the referee for constructive suggestions. J. M. Isidro thanks Max-Planck-Institut fur Gravitationsphysik (Albert-Einstein-Institut) Golm, Germany, for hospitality. This paper has been supported ...[+]
Tipo: Artículo

References

Szabo, R. (2003). Quantum field theory on noncommutative spaces. Physics Reports, 378(4), 207-299. doi:10.1016/s0370-1573(03)00059-0

Szabo, R. J. (2009). Quantum gravity, field theory and signatures of noncommutative spacetime. General Relativity and Gravitation, 42(1), 1-29. doi:10.1007/s10714-009-0897-4

Gouba, L., & Scholtz, F. G. (2009). On the uniqueness of unitary representations of the non-commutative Heisenberg–Weyl algebra. Canadian Journal of Physics, 87(9), 995-997. doi:10.1139/p09-055 [+]
Szabo, R. (2003). Quantum field theory on noncommutative spaces. Physics Reports, 378(4), 207-299. doi:10.1016/s0370-1573(03)00059-0

Szabo, R. J. (2009). Quantum gravity, field theory and signatures of noncommutative spacetime. General Relativity and Gravitation, 42(1), 1-29. doi:10.1007/s10714-009-0897-4

Gouba, L., & Scholtz, F. G. (2009). On the uniqueness of unitary representations of the non-commutative Heisenberg–Weyl algebra. Canadian Journal of Physics, 87(9), 995-997. doi:10.1139/p09-055

Banerjee, R., Chakraborty, B., Ghosh, S., Mukherjee, P., & Samanta, S. (2009). Topics in Noncommutative Geometry Inspired Physics. Foundations of Physics, 39(12), 1297-1345. doi:10.1007/s10701-009-9349-y

Chakraborty, B., Gangopadhyay, S., & Saha, A. (2004). Seiberg-Witten map and Galilean symmetry violation in a noncommutative planar system. Physical Review D, 70(10). doi:10.1103/physrevd.70.107707

Scholtz, F. G., Chakraborty, B., Gangopadhyay, S., & Hazra, A. G. (2005). Dual families of noncommutative quantum systems. Physical Review D, 71(8). doi:10.1103/physrevd.71.085005

Chakraborty, B., Gangopadhyay, S., Hazra, A. G., & Scholtz, F. G. (2006). Twisted Galilean symmetry and the Pauli principle at low energies. Journal of Physics A: Mathematical and General, 39(30), 9557-9572. doi:10.1088/0305-4470/39/30/011

Gangopadhyay, S., & Scholtz, F. G. (2009). Path-Integral Action of a Particle in the Noncommutative Plane. Physical Review Letters, 102(24). doi:10.1103/physrevlett.102.241602

Scholtz, F. G., Gouba, L., Hafver, A., & Rohwer, C. M. (2009). Formulation, interpretation and application of non-commutative quantum mechanics. Journal of Physics A: Mathematical and Theoretical, 42(17), 175303. doi:10.1088/1751-8113/42/17/175303

Duval, C., & Horváthy, P. A. (2000). The exotic Galilei group and the «Peierls substitution». Physics Letters B, 479(1-3), 284-290. doi:10.1016/s0370-2693(00)00341-5

Horváthy, P. A., & Plyushchay, M. S. (2004). Anyon wave equations and the noncommutative plane. Physics Letters B, 595(1-4), 547-555. doi:10.1016/j.physletb.2004.05.043

Bérard, A., & Mohrbach, H. (2004). Monopole and Berry phase in momentum space in noncommutative quantum mechanics. Physical Review D, 69(12). doi:10.1103/physrevd.69.127701

Carroll, R. (2010). On The Emergence Theme Of Physics. doi:10.1142/9789814291804

ELZE, H.-T. (2009). THE ATTRACTOR AND THE QUANTUM STATES. International Journal of Quantum Information, 07(supp01), 83-96. doi:10.1142/s0219749909004700

Elze, H.-T. (2009). Symmetry aspects in emergent quantum mechanics. Journal of Physics: Conference Series, 171, 012034. doi:10.1088/1742-6596/171/1/012034

Elze, H.-T. (2009). Does quantum mechanics tell an atomistic spacetime? Journal of Physics: Conference Series, 174, 012009. doi:10.1088/1742-6596/174/1/012009

FARAGGI, A. E., & MATONE, M. (2000). THE EQUIVALENCE POSTULATE OF QUANTUM MECHANICS. International Journal of Modern Physics A, 15(13), 1869-2017. doi:10.1142/s0217751x00000811

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem