Mostrar el registro sencillo del ítem
dc.contributor.author | Violano, Antonella | es_ES |
dc.contributor.author | Cannaviello, Monica | es_ES |
dc.date.accessioned | 2023-01-12T08:26:06Z | |
dc.date.available | 2023-01-12T08:26:06Z | |
dc.date.issued | 2022-12-30 | |
dc.identifier.uri | http://hdl.handle.net/10251/191262 | |
dc.description.abstract | [EN] The goal of optimizing material resources and the polyvalent use of space lead to the development of new technologies within a renewed architectural spatiality, which from the point of view of effectiveness of choices allow for low-carbon buildings. The climate emergency, in fact, asks us today to reinterpret Vitruvius concept of Firmitas according to the criteria of durability reliability and resilience associated with widespread usability functionality and circularity (Utilitas) traceable throughout the life cycle a building. The paper illustrates the results of a scientific research project that led to the construction of a prototype of a minimal residence, designed and built with the total low approach, characterized by regenerative design, economy, lightness, ease of assembly, recyclability, as well as excellent overall performance and high levels of comfort. The idea of a building, easily assembled and disassembled, is a strength of the Petite-Cabane design concept: a 3x3 m single-user minimum residential unit made with the Light Gauge Steel Building System (LGS) produced with controlled automatically roll forming machine, for which high technological and energy performance envelope packages. The design of a small house becomes the mise en forme of a space in which essential equipment, energy performance, architectural qualities, economic and environmental costs are linked to the ease and immediacy of construction but also to the flexibility and circularity of technological choices. | es_ES |
dc.description.abstract | [IT] L'obiettivo di ottimizzare le risorse materiali e l'uso dello spazio portano allo sviluppo di nuove tecnologie all'interno di una rinnovata spazialità architettonica, che dal punto di vista dell'efficacia delle scelte consentono di realizzare edifici a bassa emissione di carbonio. L'emergenza climatica, infatti, ci chiede oggi di reinterpretare il concetto di firmitas di Vitruvio secondo i criteri di durabilità affidabilità e resilienza associati a funzionalità fruibilità diffusa e circolarità (utilitas) rintracciabili lungo tutto il ciclo di vita di un edificio. L'articolo illustra i risultati di un progetto di ricerca scientifica che ha portato alla realizzazione di un prototipo di residenza "minima", progettata e costruita con l'approccio "total low", caratterizzato da design rigenerativo, economicità, leggerezza, facilità di montaggio, riciclabilità, oltre che da ottime prestazioni complessive ed elevati livelli di comfort. L'idea di un edificio facilmente assemblabile e smontabile è un punto di forza del concept progettuale della "Petite-Cabane": un'unità abitativa minima mono-utente di 3x3 m realizzata con il Light Gauge Steel Building System (LGS) prodotto con macchina di profilatura automatica controllata, per la quale sono previsti pacchetti di involucri ad alte prestazioni tecnologiche ed energetiche. Il progetto di una piccola casa diventa la "mise en forme" di uno spazio in cui le attrezzature "essenziali", le prestazioni energetiche, le qualità architettoniche, i costi economici e ambientali sono legati alla facilità e all'immediatezza della costruzione ma anche alla circolarità delle scelte tecnologiche. | es_ES |
dc.description.sponsorship | The contribution concerns an industrial experimental design carried out within the “CNB” research group of the Università della Campania “L. Vanvitelli” and funded by LSF Italia srl (industrial partner). The “Petite-cabane” was the documenting tool for the technological design research carried out by A. Violano (Coord.), L. Capobianco (Design), M. Cannaviello (Energy), S. Rinaldi and A. Della Cioppa (Technology). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | VITRUVIO - International Journal of Architectural Technology and Sustainability | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Circular construction | es_ES |
dc.subject | Technology flexibility | es_ES |
dc.subject | Carbon neutral building | es_ES |
dc.subject | Human-centred design | es_ES |
dc.subject | Environ-centred design | es_ES |
dc.title | Design process innovation through flexible and circular technological solutions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/vitruvio-ijats.2022.18715 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Violano, A.; Cannaviello, M. (2022). Design process innovation through flexible and circular technological solutions. VITRUVIO - International Journal of Architectural Technology and Sustainability. 7(2):60-73. https://doi.org/10.4995/vitruvio-ijats.2022.18715 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/vitruvio-ijats.2022.18715 | es_ES |
dc.description.upvformatpinicio | 60 | es_ES |
dc.description.upvformatpfin | 73 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 2444-9091 | |
dc.relation.pasarela | OJS\18715 | es_ES |
dc.description.references | Ajayi, S.O., Oyedele, L.O., Bilal, M., Akinade, O.O., Alaka, H.A., Owolabi, H.A. 2017. ‘Attributes of design for construction waste minimization: a case study of wasteto-energy.’ Renew. Sustain. Energy Rev., 73, 1333e1341. https://doi.org/10.1016/j.rser.2017.01.084 | es_ES |
dc.description.references | Akanbi, L. A., Oyedele, L. O., Omoteso, K., Bilal, M., Akinade, O. O., Ajayi, A. O., Davila Delgado, J. M., Owolabi H. A. 2019. ‘Disassembly and deconstruction analytics system (D-DAS) for construction in a circular economy.’ Journal of Cleaner Production, 223, 2019, Pages 386-396, https://doi.org/10.1016/j.jclepro.2019.03.172 | es_ES |
dc.description.references | Akinade, O.O., Oyedele, L.O., Ajayi, S.O., Bilal, M., Alaka, H.A., Owolabi, H.A., Bello, S.A., Jaiyeoba, B.E., Kadiri, K.O. 2017. ‘Design for Deconstruction (DfD): Critical success factors for diverting end-of-life waste from landfills.’ Waste Manag., 60, 3–13. https://doi.org/10.1016/j.wasman.2016.08.017 | es_ES |
dc.description.references | Attia, S. 2018. Regenerative and Positive Impact Architecture: Learning from Case Studies, Springer, Liege, Belgium, pp. 33-45. https://doi.org/10.1007/978-3-319-66718-8_5 | es_ES |
dc.description.references | Brownell, B. 2018. ‘The aesthetics of green: material expression in sustainable architecture.’ TECHNE - Journal of Technology for Architecture and Environment, 16, 20-28. https://doi.org/10.13128/Techne-23996 | es_ES |
dc.description.references | Cellucci, C., Di Sivo, M. 2014. ‘Strategie per la flessibilità spaziale e tecnologica.’ TECH–E - Rivista di Tecnologia pe’ l’Architettura ’ l’Ambiente, 8, 271-277. https://doi.org/10.13128/Techne-15082 | es_ES |
dc.description.references | Cruz Rios, F., Chong, W. K., Grau. D. 2015. ‘Design for disassembly and deconstruction-challenges and opportunities.’ Procedia Eng. 118 (Jan): 1296–1304. https://doi.org/10.1016/j.proeng.2015.08.485. | es_ES |
dc.description.references | D’Amico, B., Pomponi, F. 2018. Sustainability tool to optimise material quantities of steel in the construction industry, 25th CIRP Life Cycle Engineering (LCE) Conference, 30 April – 2 May 2018, Copenhagen, Denmark, Procedia CIRP 69 184 – 188. https://doi.org/10.1016/j. procir.2017.10.006 | es_ES |
dc.description.references | De Wolf, C., Pomponi, F., Moncaster, A. 2017. ‘Measuring embodied carbon dioxide equivalent of buildings: A review and critique of current industry practice.’ Energy and Buildings, 140, pp. 68-80. https://doi.org/10.1016/j.enbuild.2017.01.075 | es_ES |
dc.description.references | Ekanayake, L.L., Ofori, G. 2004. ‘Building waste assessment score: design-based tool.’ Build. Environ. 39, 851e861. https://doi.org/10.1016/j.buildenv.2004.01.007 | es_ES |
dc.description.references | Ferreira Silva, M. 2020. Another way of living: The Prefabrication and modularity toward circularity in the architecture, BEYOND 2020 – World Sustainable Built Environment conference IOP Conf. Series: Earth and Environmental Science 588 (2020) 042048 IOP Publishing, https://doi.org/10.1088/1755-1315/588/4/042048 | es_ES |
dc.description.references | Ferreira Silva, M., Jayasinghe, L.B., Waldmann, D., Hertweck, F. 2020. Recyclable Architecture: Prefabricated and Recyclable Typologies. Sustainability, 12, 1342. https://doi.org/10.3390/su12041342 | es_ES |
dc.description.references | Finch, G., Marriage, G. 2019. ‘Eliminating Building and Construction Waste with Computer-Aided Manufacturing and Prefabrication.’ In: Mutis, I., Hartmann, T. (eds) Advances in Informatics and Computing in Civil and Construction Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-00220-6_97 | es_ES |
dc.description.references | Florentin, Y., Pearlmutter, D., Givoni, B., Gal, E. 2017. A life-cycle energy and carbon analysis of hemp-lime bio-composite building materials, Energy and Building, 156, 293-305, https://doi.org/10.1016/j.enbuild.2017.09.097 | es_ES |
dc.description.references | Gardner, H. 1996. Intelligence Reframed. Libri di base ed., NY, USA. | es_ES |
dc.description.references | Gelderman, R.J. 2016. ‘Design for Change and Circularity – Accommodating Circular Material & Product Flows in Construction’, Energy Procedia, 96, 301-311, https://doi.org/10.1016/j.egypro.2016.09.153 | es_ES |
dc.description.references | Kanters, J. 2018. ‘Design for Deconstruction in the Design Process: State of the Art.’ Buildings 2018, 8, 150; doi:10.3390/buildings8110150 | es_ES |
dc.description.references | Lozano, D., Martín, Á., Serrano, M. A., López-Colina, C. 2019.’Design of Flexible Structural System for Building Customization.’ Advances in Civil Engineering, 2019, 2103830. https://doi.org/10.1155/2019/2103830 | es_ES |
dc.description.references | Luther, M., Altomonte, S. and Coulson, J. 2006. Towards a renewable adaptive recyclable and environmental architecture, in ANZAScA 2006: Challenges for architectural science in changing climates: proceedings of the 40th Annual Conference of the Architectural Science Association, School of Architecture, Landscape Architecture and Urban Design, University of Adelaide and Architectural Science Association, Adelaide, S. Aust., pp. 270-278. | es_ES |
dc.description.references | Mang, P., Reed, B. 2020. ‘Regenerative Development and Design.’ In: Loftness, V. (ed.) Sustainable Built Environments, pp.115-141 doi:10.1007/978-1-0716-0684-1_303 | es_ES |
dc.description.references | McDonough, W., Braungart, M. 2010. Cradle to Cradle: Remaking the way we make things. North Point Press, Farrar, Straus and Giroux, NY, USA. | es_ES |
dc.description.references | Ramos-Carranza, A., Añón-Abajas, R. M., Rivero-Lamela, G. 2021. ‘A Research Methodology for Mitigating Climate Change in the Restoration of Buildings: Rehabilitation Strategies and Low-Impact Prefabrication in the “El Rodezno” Water Mill.’ Sustainability, 13(16), 8869. https://doi.org/10.3390/su13168869 | es_ES |
dc.description.references | Verhagen, Teun, Cetinay, Hale, Voet, Ester, Sprecher, Benjamin. 2022. Transitioning to Low-Carbon Residential Heating: The Impacts of Material-Related Emissions. Environmental Science & Technology, 56(12), 8561–8570. https://doi.org/10.1021/acs.est.1c06362 | es_ES |
dc.description.references | Violano, A., Cannaviello, M. 2021. ‘The communicative force of a prototype: testing technological design research in architecture’ In: Proceedings of INTED2021 Conference, 8th-9th March 2021. https://doi.org/10.21125/inted.2021.0176 | es_ES |
dc.description.references | Violano, A., Cannaviello, M. 2022. ‘Bio-based thinking: ricerca e innovazione sui materiali carbon-zero per la circular economy.’ In: Ferrante, T., Tucci, F., BASES - Benessere, Ambiente, Sostenibilità, Energia, Salute. Programmare e progettare nella transizione, pp. 387-395. Franco Angelo Editore, Milano | es_ES |
dc.description.references | Violano, A., Cannaviello, M., Del Prete, S. 2021. ‘Bio-based circular materials. Innovative packaging and construction product.’ AGATHÓN | International Journal of Architecture, Art and Design, 9(online), pp. 244-253. https://doi.org/10.19229/2464-9309/9242021 | es_ES |
dc.description.references | Violano, A., Capobianco, L., Cannaviello, M. 2021. ‘Il futuro adesso: un edificio prefabbricato adattivo su misura a energia zero.’ TECHNE - Journal of Technology for Architecture and Environment, (2), 122-127. https://doi.org/10.13128/techne-10695 | es_ES |