Mostrar el registro sencillo del ítem
dc.contributor.author | Jiménez-Serrano, Santiago | es_ES |
dc.contributor.author | RODRIGO BORT, MIGUEL | es_ES |
dc.contributor.author | Calvo Saiz, Conrado Javier | es_ES |
dc.contributor.author | Castells, Francisco | es_ES |
dc.contributor.author | Millet Roig, José | es_ES |
dc.date.accessioned | 2023-01-13T07:22:20Z | |
dc.date.available | 2023-01-13T07:22:20Z | |
dc.date.issued | 2021-09-15 | es_ES |
dc.identifier.issn | 2325-887X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/191312 | |
dc.description.abstract | [EN] Although standard 12-lead ECG is the primary technique in cardiac diagnostic, detecting different cardiac diseases using single or reduced number of leads is still challenging. The purpose of our team, itaca-UPV, is to provide a method able to classify ECG records using minimal lead information in the context of the 2021 PhysioNet/Computing in Cardiology Challenge, also using only a single-lead. We resampled and filtered the ECG signals, and extracted 109 features mostly based on Hearth Rhythm Variability (HRV). Then, we used selected features to train one feed-forward neural network (FFNN) with one hidden layer for each class using a One-vs-Rest approach, thus allowing each ECG to be classified as belonging to none or more than one class. Finally, we performed a 3-fold cross validation to assess the model performance. Our classifiers received scores of 0.34, 0.34, 0.27, 0.30, and 0.34 (ranked 26th, 21th, 29th, 25th, and 22th out of 39 teams) for the 12, 6, 4, 3 and 2-lead versions of the hidden test set with the Challenge evaluation metric. Our minimal-lead approach may be beneficial for novel portable or wearable ECG devices used as screening tools, as it can also detect multiple and concurrent cardiac conditions. Accuracy in detection can be improved adding more disease-specific features. | es_ES |
dc.language | Inglés | es_ES |
dc.relation.ispartof | Computing in cardiology | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Multiple Cardiac Disease Detection from Minimal-Lead ECG Combining Feedforward Neural Networks with a One-vs-Rest Approach | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.22489/CinC.2021.109 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109547RB-I00/ES/CUANTIFICACION DEL DETERIORO LOCAL DEL MIOCARDIO MEDIANTE CATETER MULTIELECTRODO GRID ALTA DENSIDAD. IDENTIFICACION DE METRICAS DEL SUSTRATO FIBROTICO RESPONSABLE DE ARRITMIAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia | es_ES |
dc.description.bibliographicCitation | Jiménez-Serrano, S.; Rodrigo Bort, M.; Calvo Saiz, CJ.; Castells, F.; Millet Roig, J. (2021). Multiple Cardiac Disease Detection from Minimal-Lead ECG Combining Feedforward Neural Networks with a One-vs-Rest Approach. 1-4. https://doi.org/10.22489/CinC.2021.109 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 48th Computing in Cardiology Conference (CinC 2021) | es_ES |
dc.relation.conferencedate | Septiembre 12-15,2021 | es_ES |
dc.relation.conferenceplace | Brno, Czech Republic | es_ES |
dc.relation.publisherversion | https://www.cinc.org/archives/2021/ | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 4 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\455103 | es_ES |