- -

Multiple Cardiac Disease Detection from Minimal-Lead ECG Combining Feedforward Neural Networks with a One-vs-Rest Approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multiple Cardiac Disease Detection from Minimal-Lead ECG Combining Feedforward Neural Networks with a One-vs-Rest Approach

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Jiménez-Serrano, Santiago es_ES
dc.contributor.author RODRIGO BORT, MIGUEL es_ES
dc.contributor.author Calvo Saiz, Conrado Javier es_ES
dc.contributor.author Castells, Francisco es_ES
dc.contributor.author Millet Roig, José es_ES
dc.date.accessioned 2023-01-13T07:22:20Z
dc.date.available 2023-01-13T07:22:20Z
dc.date.issued 2021-09-15 es_ES
dc.identifier.issn 2325-887X es_ES
dc.identifier.uri http://hdl.handle.net/10251/191312
dc.description.abstract [EN] Although standard 12-lead ECG is the primary technique in cardiac diagnostic, detecting different cardiac diseases using single or reduced number of leads is still challenging. The purpose of our team, itaca-UPV, is to provide a method able to classify ECG records using minimal lead information in the context of the 2021 PhysioNet/Computing in Cardiology Challenge, also using only a single-lead. We resampled and filtered the ECG signals, and extracted 109 features mostly based on Hearth Rhythm Variability (HRV). Then, we used selected features to train one feed-forward neural network (FFNN) with one hidden layer for each class using a One-vs-Rest approach, thus allowing each ECG to be classified as belonging to none or more than one class. Finally, we performed a 3-fold cross validation to assess the model performance. Our classifiers received scores of 0.34, 0.34, 0.27, 0.30, and 0.34 (ranked 26th, 21th, 29th, 25th, and 22th out of 39 teams) for the 12, 6, 4, 3 and 2-lead versions of the hidden test set with the Challenge evaluation metric. Our minimal-lead approach may be beneficial for novel portable or wearable ECG devices used as screening tools, as it can also detect multiple and concurrent cardiac conditions. Accuracy in detection can be improved adding more disease-specific features. es_ES
dc.language Inglés es_ES
dc.relation.ispartof Computing in cardiology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Multiple Cardiac Disease Detection from Minimal-Lead ECG Combining Feedforward Neural Networks with a One-vs-Rest Approach es_ES
dc.type Comunicación en congreso es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.22489/CinC.2021.109 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109547RB-I00/ES/CUANTIFICACION DEL DETERIORO LOCAL DEL MIOCARDIO MEDIANTE CATETER MULTIELECTRODO GRID ALTA DENSIDAD. IDENTIFICACION DE METRICAS DEL SUSTRATO FIBROTICO RESPONSABLE DE ARRITMIAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Jiménez-Serrano, S.; Rodrigo Bort, M.; Calvo Saiz, CJ.; Castells, F.; Millet Roig, J. (2021). Multiple Cardiac Disease Detection from Minimal-Lead ECG Combining Feedforward Neural Networks with a One-vs-Rest Approach. 1-4. https://doi.org/10.22489/CinC.2021.109 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 48th Computing in Cardiology Conference (CinC 2021) es_ES
dc.relation.conferencedate Septiembre 12-15,2021 es_ES
dc.relation.conferenceplace Brno, Czech Republic es_ES
dc.relation.publisherversion https://www.cinc.org/archives/2021/ es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 4 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\455103 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem