- -

ECG Quality Assessment via Deep Learning and Data Augmentation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

ECG Quality Assessment via Deep Learning and Data Augmentation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Huerta, Álvaro es_ES
dc.contributor.author Martínez-Rodrigo, Arturo es_ES
dc.contributor.author Rieta, J J es_ES
dc.contributor.author Alcaraz, Raúl es_ES
dc.date.accessioned 2023-01-13T07:22:31Z
dc.date.available 2023-01-13T07:22:31Z
dc.date.issued 2021-09-15 es_ES
dc.identifier.issn 2325-887X es_ES
dc.identifier.uri http://hdl.handle.net/10251/191324
dc.description.abstract [EN] Quality assessment of ECG signals acquired with wearable devices is essential to avoid misdiagnosis of some cardiac disorders. For that purpose, novel deep learning algorithms have been recently proposed. However, training of these methods require large amount of data and public databases with annotated ECG samples are limited. Hence, the present work aims at validating the usefulness of a well-known data augmentation approach in this context of ECG quality assessment. Precisely, classification between high- and low-quality ECG excerpts achieved by a common convolutional neural network (CNN) trained on two databases has been compared. On the one hand, 2,000 5 second-length ECG excerpts were initially selected from a freely available database. Half of the segments were extracted from noisy ECG recordings and the other half from high-quality signals. On the other hand, using a data augmentation approach based on time-scale modification, noise addition, and pitch shifting of the original noisy ECG experts, 1,000 additional low-quality intervals were generated. These surrogate noisy signals and the original highquality ones formed the second dataset. The results for both cases were compared using a McNemar test and no statistically significant differences were noticed, thus suggesting that the synthesized noisy signals could be used for reliable training of CNN-based ECG quality indices. es_ES
dc.language Inglés es_ES
dc.relation.ispartof Computing in cardiology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title ECG Quality Assessment via Deep Learning and Data Augmentation es_ES
dc.type Comunicación en congreso es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.22489/CinC.2021.243 es_ES
dc.relation.projectID info:eu-repo/grantAgreement///AICO%2F2021%2F286//Inteligencia Artificial para Revolucionar la Medicina Móvil Usando Dispositivos Llevables/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-83952-C3-1-R/ES/ESTUDIO MULTICENTRICO PARA LA EVALUACION DEL SUSTRATO ARRITMOGENICO EN PACIENTES CON FIBRILACION AURICULAR. APLICACION A LA ABLACION POR CATETER/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FEDER//2018%2F11744/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JCCM//SBPLY%2F17%2F180501%2F000411//Caracterización del sustrato auricular mediante análisis de señal como herramienta de asistencia procedimental en ablación por catéter de fibrilación auricular/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Huerta, Á.; Martínez-Rodrigo, A.; Rieta, JJ.; Alcaraz, R. (2021). ECG Quality Assessment via Deep Learning and Data Augmentation. 1-4. https://doi.org/10.22489/CinC.2021.243 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 48th Computing in Cardiology Conference (CinC 2021) es_ES
dc.relation.conferencedate Septiembre 12-15,2021 es_ES
dc.relation.conferenceplace Brno, Czech Republic es_ES
dc.relation.publisherversion https://www.cinc.org/archives/2021/ es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 4 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\463377 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Junta de Comunidades de Castilla-La Mancha es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem